【题目】已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)证明:.
【答案】(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)见解析.
【解析】试题分析:(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)不等式等价于,由(Ⅰ) ①, 所以原不等式等价于,构造求最值即可.
试题解析:(Ⅰ)函数的定义域为,
则,解得,所以.此时,,由得,得 ,
所以函数的单调增区间为,单调减区间为.
(Ⅱ)不等式等价于,由(Ⅰ)在上的最大值为,
所以 ①,
令,所以,,所以,
当时,,所以在 上单调递增,所以,所以在 上单调递增,所以,即,
因为,所以,
所以,时,.
点晴:本题主要考查函数单调性,及不等式的证明问题.要求单调性,求导比较导方程的根的大小,解不等式可得单调区间,要证明不等式恒成立问题可转化为构造新函数证明新函数单调,只需要证明其导函数大于等于0(或者恒小于等于0即可),要证明一个不等式,我们可以先根据题意构造新函数,求其值最值即可.这类问题的通解方法就是:划归与转化之后,就可以假设相对应的函数,然后利用导数研究这个函数的单调性、极值和最值,图像与性质,进而求解得结果.
科目:高中数学 来源: 题型:
【题目】微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都是青年人.
(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:
(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.
附:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.
(1)求动点的轨迹的方程;
(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么在一个生产周期内该企业生产甲、乙两种产品各多少吨可获得最大利润,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.
(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?
(2)若所有“优秀警员”中选3名代表,用表示所选女“优秀警员”的人数,试求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥ ”发生的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线交椭圆于P、Q两点,使PB2⊥QB2,求△PB2Q的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sin2x的图象向左平移 个单位,再向上平移1个单位,所得图象的函数解析式是( )
A.y=2cos2x
B.y=2sin2x
C.
D.y=cos2x
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com