【题目】椭圆经过为坐标原点,线段的中点在圆上.
(1)求的方程;
(2)直线不过曲线的右焦点,与交于两点,且与圆相切,切点在第一象限, 的周长是否为定值?并说明理由.
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆锥的顶点为,底面圆心为,半径为.
(1)设圆锥的母线长为,求圆锥的体积;
(2)设,、是底面半径,且,为线段的中点,如图.求异面直线与所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知椭圆的离心率为,点在椭圆上,若圆的一条切线(斜率存在)与椭圆C有两个交点A,B,且.
(1)求椭圆的标准方程;
(2)求圆O的标准方程;
(3)已知椭圆C的上顶点为M,点N在圆O上,直线MN与椭圆C相交于另一点Q,且,求直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若椭圆C1: 和椭圆C2: 的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;
②;
③;
④a1-a2<b1-b2.
其中,所有正确结论的序号是( )
A. ②③④ B. ①③④
C. ①②④ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合是实数集的子集,如果正实数满足:对任意都存在使得则称为集合的一个“跨度”,已知三个命题:
(1)若为集合的“跨度”,则也是集合的“跨度”;
(2)集合的“跨度”的最大值是4;
(3)是集合的“跨度”.
这三个命题中正确的个数是()
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为的正方形与梯形所在的平面互相垂直,已知,,,点在线段上.
(1)证明:平面平面;
(2)判断点的位置,使得平面与平面所成的锐二面角为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图(1)为东方体育中心,其设计方案侧面的外轮廓线如图(2)所示;曲线是以点为圆心的圆的一部分,其中,曲线是抛物线的一部分;且恰好等于圆的半径,与圆相切且.
(1)若要求米,米,求与的值;
(2)当时,若要求不超过45米,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com