精英家教网 > 高中数学 > 题目详情
甲有一只放有x个红球,y个黄球,z个白球的箱子,乙有一只放有3个红球,2个黄球,1个白球的箱子,
(1)两个各自从自己的箱子中任取一球,规定:当两球同色时甲胜,异色时乙胜。若用x、y、z表示甲胜的概率;
2)在(1)下又规定当甲取红、黄、白球而胜的得分分别为1、2、3分,否则得0分,求甲得分的期望的最大值及此时x、y、z的值。
(1);(2)时, 最大.

试题分析:(1)甲胜包含甲、乙均取红球,甲、乙均取白球,甲、乙均取黄球三种情况,将这三种情况的概率求出相加即得.(2)设甲的得分为随机变量,根据题设可取0、1、2、3.由(1)可得取1、2、3的概率(用x,y,z表示),用1减去这三个概率即得取0的概率,从而可得的期望,再根据可得期望的最大值及x,y,z的值.
试题解析:(1)P(甲胜)=P(甲、乙均取红球)+P(甲、乙均取白球)+P(甲、乙均取黄球)
(2)设甲的得分为随机变量,则:

∵x、y、z∈N且x+y+z=6,∴0≤y≤6
所以时,取得最大值,此时.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

个同样型号的产品中,有个是正品,个是次品,从中任取个,求(1)其中所含次品数的期望、方差;(2)事件“含有次品”的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示.

假设每名队员每次射击相互独立.
(Ⅰ)求上图中的值;
(Ⅱ)队员甲进行三次射击,求击中目标靶的环数不低于8环的次数的分布列及数学期望(频率当作概率使用);
(Ⅲ)由上图判断,在甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

学校为了使运动员顺利参加运动会,招募了8名男志愿者和12名女志愿者,这20名志愿者的身高如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.

 

 
 
8
16
5
8
9
 
 
8
7
6
17
2
3
5
5
6
7
4
2
18
0
1
2
 
 
 
 
1
19
0
 
 
 
 
(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有1人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中随机选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地区因干旱缺水,政府向市民宣传节约用水,并进行广泛动员 三个月后,统计部门在一个小区随机抽取了户家庭,分别调查了他们在政府动员前后三个月的月平均用水量(单位:吨),将所得数据分组,画出频率分布直方图(如图所示)

动员前                                 动员后
(Ⅰ)已知该小区共有居民户,在政府进行节水动员前平均每月用水量是吨,请估计该小区在政府动员后比动员前平均每月节约用水多少吨;
(Ⅱ)为了解动员前后市民的节水情况,媒体计划在上述家庭中,从政府动员前月均用水量在范围内的家庭中选出户作为采访对象,其中在内的抽到户,求的分布列和期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X,则E(X)=________,V(X)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为贯彻“激情工作,快乐生活”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为.
(1)求选手甲答题次数不超过4次可进入决赛的概率;
(2)设选手甲在初赛中答题的个数为X,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

离散型随机变量的分布列为:


1





则X的期望___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为迎接我校110周年校庆,校友会于日前举办了一次募捐爱心演出,有1000 人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数,满足电脑显示“中奖”,且抽奖者获得9000元奖金;否则电脑显示“谢谢”,则不中奖.
(1)已知校友甲在第一轮抽奖中被抽中,求校友甲在第二轮抽奖中获奖的概率;
(2)若校友乙参加了此次活动,求校友乙参加此次活动收益的期望;

查看答案和解析>>

同步练习册答案