精英家教网 > 高中数学 > 题目详情
在△ABC中,三内角A,B,C所对的边分别为a,b,c,若B=60°,c=(
3
-1)a

(1)求角C的大小;
(2)已知当x∈R时,函数f(x)=sinx(cosx+asinx)的最大值为1,求a的值.
分析:(1)由题意A=120°-C,代入sinC=(
3
-1)sinA
sinC=(
3
-1)sin(120°-C)
展开求C
(2)利用恒等变换公式对f(x)=sinx(cosx+asinx)化简得到f(x)=
a
2
+
1+a2
2
sin(2x-θ),再由最大值为1,建立方程求出a
解答:解:(1)由题意若B=60°,c=(
3
-1)a
,可变为sinC=(
3
-1)sinA
,即sinC=(
3
-1)sin(120°-C)

sinC=(
3?
-1)(
3
2
cosC+
1
2
sinC)

整理得
3-
3
2
sinC=
3-
3
2
cosC

可得tanC=1,C=
π
4

(2)f(x)=sinx(cosx+asinx)=
1
2
sin2x+
a
2
(1-cos2x)=
a
2
+
1+a2
2
sin(2x-θ),tanθ=a
∵函数f(x)=sinx(cosx+asinx)的最大值为1
a
2
+
1+a2
2
=1,
∴a+
1+a2
=2,解得a=
3
4
点评:本题考查三角函数的最值,解题的关键是把三角函数的解析式转化为函数y=Asin(ωx+φ)的形式,再由三角函数的性质确定函数的最值,此类题一般有两种类型,一是求最值,一是由最值求参数,本题是第二类.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2ω+2cos2ωx-1(ω>0)的最小正周期为2π.
(1)当x∈R时,求f(x)的值域;
(2)在△ABC中,三内角A、B、C所对的边分别是a、b、c,已知f(A)=1,a=2
7
,sinB=2sinC,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C的对边分别为a,b,c且满足(2b-c)cosA=acosC
(Ⅰ)求角A的大小;
(Ⅱ)若|
AC
-
AB
|=1,求△ABC周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函数f(x)的周期及单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知点(A,
1
2
)
经过函数f(x)的图象,b,a,c成等差数列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对应的边长分别为a、b、c,且A、B、C成等差数列,b=
3
,则△ABC的外接圆半径为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对的边分别为a、b、c,设向量
m
=(b-c,c-a)
n
=(b, c+a)
,若向量
m
n
,则角A的大小为(  )
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

同步练习册答案