精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

是数列)的前项和,,且

(I)证明:数列)是常数数列;

(II)试找出一个奇数,使以18为首项,7为公比的等比数列)中的所有项都是数列中的项,并指出是数列中的第几项.

 

【答案】

(I)数列)是常数数列

(II)若是数列中的第项,由,取,得是数列中的第项.

【解析】解:(I)当时,由已知得

因为,所以. …………………………①

于是. …………………………………………………②

由②-①得:.……………………………………………③

于是.……………………………………………………④

由④-③得:.…………………………………………………⑤

即数列)是常数数列.

(II)由①有,所以

由③有,所以

而⑤表明:数列分别是以为首项,6为公差的等差数列.

所以

由题设知,.当为奇数时,为奇数,而为偶数,所以不是数列中的项,只可能是数列中的项.

是数列中的第项,由,取,得,此时,由,得,从而是数列中的第项.

(注:考生取满足的任一奇数,说明是数列中的第项即可)

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案