精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.

【答案】
(1)解:直线l的参数方程为 (t为参数),

即为 ,消去t,可得直线l的普通方程为 x+y+4=0;

曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).即为ρ=4,(﹣1舍去),

由x2+y22,x=ρcosθ,y=ρsinθ,可得x2+y2=16


(2)解:圆C的圆心为(0,0),半径r=4,

C到直线的距离为d= =2,

|AB|=2 =2 =4

由余弦定理可得cos∠AOB= = =﹣

可得


【解析】(1)运用特殊角的三角函数值及代入法,可得直线l的普通方程;解得ρ=4,由x2+y22 , 可得曲线C的直角坐标方程;(2)求得圆心到直线的距离,弦长AB,由余弦定理,计算即可得到所求∠AOB的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 是奇函数 )的导函数, ,当 时, 则使得 成立的 的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题 :关于 的不等式 对一切 恒成立,命题 :指数函数 是增函数,若 为真、 为假,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线 的极坐标方程为 ,直线 的参数方程为
为参数, 为直线的倾斜角).
(1)写出直线 的普通方程和曲线 的直角坐标方程;
(2)若直线 与曲线 有唯一的公共点,求角 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知等差数列.

(1)求数列的通项公式;

(2)记数列的前项和为,求

(3)是否存在正整数,使得仍为数列中的项,若存在,求出所有满足的正整数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是(  )
A.[ , +∞)
B.[ , +∞)
C.[ , +∞)
D.[ , +∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[0,1]上的函数f(x)满足:
①f(0)=f(1)=0;
②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义域分别是的函数一个函数.

(Ⅰ)写出函数的解析式

(Ⅱ)(Ⅰ)的条件下恒成立求实数的取值范围

(Ⅲ)时,若函数有四个零点分别为的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在 中, 分别是角 的对边,且 ,若 ,则 的面积为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案