精英家教网 > 高中数学 > 题目详情

【题目】十九大提出,加快水污染防治,建设美丽中国根据环保部门对某河流的每年污水排放量单位:吨的历史统计数据,得到如下频率分布表:

污水量

频率

将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.

(Ⅰ)求在未来3年里,至1年污水排放量的概率;

(Ⅱ)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元为减少损失,现有三种应对方案:

方案一:防治350吨的污水排放,每年需要防治费万元;

方案二:防治310吨的污水排放,每年需要防治费2万元;

方案三:不采取措施.

试比较上述三种方案,哪种方案好,并请说明理由.

【答案】(Ⅰ);(Ⅱ)采取方案二最好,理由详见解析.

【解析】

(Ⅰ)先求污水排放量的概率0.25,然后再求未来3年里,至多1年污水排放量的概率;

(Ⅱ)分别求解三种方案的经济损失的平均费用,根据费用多少作出决策.

解:由题得

设在未来3年里,河流的污水排放量的年数为Y,则

设事件“在未来3年里,至多有一年污水排放量”为事件A

在未来3年里,至多1年污水排放量的概率为

方案二好,理由如下:

由题得

分别表示方案一、方案二、方案三的经济损失,万元.

的分布列为:

2

62

P

的分布列为:

0

10

60

P

三种方案中方案二的平均损失最小,采取方案二最好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学在研究函数fx)=xR时,分别给出下面几个结论:

①等式f(-x)=-fx)在xR时恒成立;

②函数fx)的值域为(-1,1);

③若x1x2,则一定有fx1)≠fx2);

④方程fx)=xR上有三个根.

其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为分别是双曲线左、右两支上关于坐标原点对称的两点,且直线的斜率为.分别为的中点,若原点在以线段为直径的圆上,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家计了一个招标方案:两家公司从6个招标问题中随机抛取3个问题,已知这6个问中,甲公司可正确回答其中的4道题,而乙公司能正确回答每道题目的概率均为,且甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(I)求甲、乙两家公司共答对2道题的概率;

(II)设X为乙公司正确回答的题数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知四边形BCDE为直角梯形,,且ABE的中点沿AD折到位置如图,连结PCPB构成一个四棱锥

求证

平面ABCD

求二面角的大小;

在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏。将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95﹪的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,平面与正方体的各个面所在的平面所成的二面角的大小分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

1)求实数的值;

2)用定义法讨论并证明函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

同步练习册答案