【题目】十九大提出,加快水污染防治,建设美丽中国根据环保部门对某河流的每年污水排放量单位:吨的历史统计数据,得到如下频率分布表:
污水量 |
|
|
|
|
|
|
频率 |
|
|
|
|
|
|
将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.
(Ⅰ)求在未来3年里,至1年污水排放量的概率;
(Ⅱ)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元为减少损失,现有三种应对方案:
方案一:防治350吨的污水排放,每年需要防治费万元;
方案二:防治310吨的污水排放,每年需要防治费2万元;
方案三:不采取措施.
试比较上述三种方案,哪种方案好,并请说明理由.
科目:高中数学 来源: 题型:
【题目】某同学在研究函数f(x)=(x∈R)时,分别给出下面几个结论:
①等式f(-x)=-f(x)在x∈R时恒成立;
②函数f(x)的值域为(-1,1);
③若x1≠x2,则一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三个根.
其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的左、右焦点分别为、,、分别是双曲线左、右两支上关于坐标原点对称的两点,且直线的斜率为.、分别为、的中点,若原点在以线段为直径的圆上,则双曲线的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家计了一个招标方案:两家公司从6个招标问题中随机抛取3个问题,已知这6个问中,甲公司可正确回答其中的4道题,而乙公司能正确回答每道题目的概率均为,且甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(I)求甲、乙两家公司共答对2道题的概率;
(II)设X为乙公司正确回答的题数,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.
Ⅰ求证;
Ⅱ若平面ABCD.
求二面角的大小;
在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏。将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95﹪的把握认为选手成绩“优秀”与文化程度有关?
优秀 | 合格 | 合计 | |
大学组 | |||
中学组 | |||
合计 |
注:,其中.
0.10 | 0.05 | 0.005 | |
2.706 | 3.841 | 7.879 |
(2)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)求已知曲线和曲线交于两点,且,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com