精英家教网 > 高中数学 > 题目详情
已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,l1⊥l2,求a.
分析:当a=1时,经检验,两直线不垂直;当a≠1时,由斜率之积等于-1可得 
-a
2
1
1-a
=-1,解得a值.
解答:解:当a=1时,直线l1:x+2y+6=0,直线l2:x+a2-1=0,显然两直线不垂直.
当a≠1时,由斜率之积等于-1可得 
-a
2
1
1-a
=-1,
解得a=
2
3
点评:本题考查两直线垂直的性质,两直线垂直斜率之积等于-1,要注意斜率不存在时的情况,这是解题的易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论:
①若命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题.
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是
a
b
=-3.
③命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.
④任意的锐角三角形ABC中,有sinA>cosB成立;
⑤直线x=
π
12
是函数y=2sin(2x-
π
6
)
的图象的一条对称轴
其中正确结论的序号为
 
.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax+3y+1=0,l2:x+(a-2)y+a=0.当l1∥l2时,实数a的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax-y+1=0与l2:x+ay+1=0(a∈R),给出如下结论:
①不论a为何值时,l1与l2都互相垂直;
②不论a为何值时,l1与l2都关于直线x+y=0对称;
③当a变化时,l1与l2分别经过定点A(0,1)和B(-1,0);
④当a变化时,l1与l2的交点轨迹是以AB为直径的圆(除去原点).
其中正确的结论有
①③④
①③④
.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

同步练习册答案