精英家教网 > 高中数学 > 题目详情
11.已知数列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+3}}(n∈{N^*})$,则求{an}的通项公式an=$\frac{2}{{{3^n}-1}}$.

分析 由题意可得$\frac{2}{{a}_{n+1}}$+1=3($\frac{2}{{a}_{n}}$+1),继而得到{$\frac{2}{{a}_{n}}$+1}是以3为首项,以3为公比的等比数列,即可求出答案.

解答 解:∵an+1=$\frac{a_n}{{{a_n}+3}}(n∈{N^*})$,
∴an+1an+3an+1=an
∴$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}}$+1,
∴$\frac{2}{{a}_{n+1}}$=$\frac{6}{{a}_{n}}$+2
∴$\frac{2}{{a}_{n+1}}$+1=3($\frac{2}{{a}_{n}}$+1),
∵a1=1,
∴$\frac{2}{{a}_{1}}$+1=3,
∴{$\frac{2}{{a}_{n}}$+1}是以3为首项,以3为公比的等比数列,
∴$\frac{2}{{a}_{n}}$+1=3n
∴an=$\frac{2}{{3}^{n}-1}$,
故答案为:$\frac{2}{{{3^n}-1}}$

点评 本题考查数列的通项公式,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,且满足2sinAcosB=2sinC-sinB.
(1)若cosB=$\frac{5\sqrt{3}}{14}$,求sinC的值;
(2)若b=5,$\overrightarrow{AC}•\overrightarrow{CB}=-5$,求△ABC的内切圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点$P({1,\frac{3}{2}})$,离心率e=$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)不过原点的直线l与椭圆C交于A,B两点,若AB的中点M在抛物线E:y2=4x上,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若曲线C1:y=x2与曲线C2:y=aex(a>0)至少存在两个交点,则a的取值范围为(  )
A.[$\frac{8}{{e}^{2}}$,+∞)B.(0,$\frac{8}{{e}^{2}}$]C.[$\frac{4}{{e}^{2}}$,+∞)D.(0,$\frac{4}{{e}^{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A中的元素(x,y)在映射f下对应B中的元素(x+2y,2x-y),则B中元素(3,1)在A中的对应元素是(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,a1=-2 012,其前n项和为Sn,若$\frac{{{S_{12}}}}{12}-\frac{{{S_{10}}}}{10}$=2,则S2012的值等于(  )
A.-2 011B.-2 012C.-2 010D.-2 013

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若i是虚数单位,
(1)已知复数Z=$\frac{5{m}^{2}}{1-2i}$-(1+5i)m-3(2+i)是纯虚数,求实数m的值.
(2)如不等式m2-(m2-3m)i<(m2-4m+3)i+10成立,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若函数y=f(x+m)在[-1,1]上单调,求m的取值范围;
(3)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}的前n项和为Sn,且S4=6,2a3-a2=6,则a1等于(  )
A.-3B.-2C.0D.1

查看答案和解析>>

同步练习册答案