精英家教网 > 高中数学 > 题目详情

【题目】底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体..

1)求证:

2)求二面角的正弦值.

【答案】(1)见解析;(2)

【解析】

1)先由线面垂直的判定定理证明平面,再证明线线垂直即可;

2)建立空间直角坐标系,求平面的一个法向量与平面的一个法向量,再利用向量数量积运算即可.

1)证明:连接,由平行且相等,可知四边形为平行四边形,所以.

由题意易知,所以

因为,所以平面

平面,所以.

2)设,由已知可得:平面平面

所以,同理可得:,所以四边形为平行四边形,

所以的中点,的中点,所以平行且相等,从而平面

,所以两两垂直,如图,建立空间直角坐标系

,由平面几何知识,得.

所以.

设平面的法向量为,由,可得

,则,所以.同理,平面的一个法向量为.

设平面与平面所成角为

,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点

1)若点的坐标为,求的值;

2)设线段的中点为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直四棱柱的底面是直角梯形,分别是棱上的动点,且

(1)证明:无论点怎样运动,四边形都为矩形;

(2)当时,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数处取得极值1,证明:

2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论上极值点的个数;

2)若是函数的两个极值点,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线的左右焦点分别为为坐标原点.为曲线右支上的点,点外角平分线上,且.若恰为顶角为的等腰三角形,则该双曲线的离心率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为4,离心率为,斜率不为0的直线与椭圆相交于两点(异于椭圆的顶点),且以为直径的圆过椭圆的右顶点.

1)求椭圆的标准方程;

2)直线是否过定点,如果过定点,求出该定点的坐标;如果不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,证明:上恒成立;

2)若函数有唯一零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案