精英家教网 > 高中数学 > 题目详情

【题目】多面体中,平面∥平面平面为直角梯形,.

1)求证:直线平面

2)求直线与平面所成角的正弦值.

【答案】1)见解析;(2

【解析】

1)先利用面面垂直的性质证明,再证明,最后利用线面垂直的判定定理可得直线平面.2)先找出直线与平面所成的角,再构造直角三角形求解.

1)因为平面平面

所以平面平面.

,平面平面

所以平面.

平面,所以.

在直角梯形中,由已知长度关系可得

因为平面

所以直线平面.

2)因为平面平面

所以平面平面.

又平面∥平面,所以平面平面.

于点,则平面.

连接,则在平面内的射影,

所以为直线与平面所成的角.

,则.

在直角三角形中,有

所以

所以

所以

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形,平面.

)求证:平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在平面直角坐标系中,椭圆的左、右焦点分别为 ,已知点都在椭圆上,其中为椭圆的离心率.

(1)求椭圆的方程;

(2)设 是椭圆上位于轴上方的两点,且直线与直线平行, 交于点

(i)若,求直线的斜率;

(ii)求证: 是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力为视力正常, 为视力低下,其中为轻度, 为中度, 为重度.统计检测结果后得到如图所示的柱状图.

(1)求该校高一年级轻度近视患病率;

(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?

(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左右焦点,左右顶点为是双曲线上任意一点,则分别以线段为直径的两圆的位置关系为( )

A. 相交B. 相切C. 相离D. 以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量函数,其图象的两条相邻对称轴间的距离为.

1)求函数的解析式;

2)将函数的图象上各点的横坐标缩短为原来的,纵坐标不变,再将图象向右平移个单位,得到的图象,求的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处与直线相切,求的值;

2)在(1)的条件下,求上的最大值;

3)若不等式对所有的都成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:①函数

②向量,且ω0

③函数的图象经过点

请在上述三个条件中任选一个,补充在下面问题中,并解答.

已知 ,且函数fx)的图象相邻两条对称轴之间的距离为.

1)若,且,求fθ)的值;

2)求函数fx)在[02π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电动车售后服务调研小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.

1)求续驶里程在的车辆数;

2)求续驶里程的平均数;

3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在内的概率.

查看答案和解析>>

同步练习册答案