精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的定义域为(﹣1,1),则函数f(2x+1)的定义域为

【答案】(﹣1,0)
【解析】解:∵函数f(x)的定义域为(﹣1,1),
∴由﹣1<2x+1<1,得﹣1<x<0,
则函数f(2x+1)的定义域为(﹣1,0).
所以答案是:(﹣1,0)
【考点精析】根据题目的已知条件,利用函数的定义域及其求法的相关知识可以得到问题的答案,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体ABCD﹣A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )
A.10
B.11
C.12
D.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB= AB. (Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D﹣A1C﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)图象上的点(1,﹣ )处的切线斜率为﹣4,
(1)求f(x)的表达式.
(2)求y=f(x)在区间[﹣3,6]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>0,f(x)= + 是R上的偶函数.
(1)求a的值;
(2)证明f(x)在(0,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0,
(1)求f(1)和f(﹣1)的值;
(2)试判断f(x)的奇偶性,并加以证明;
(3)若x≥0时f(x)为增函数,求满足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).以原点为极点, 轴的正半轴为极轴建立极坐标系,点的极坐标方程为.

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线与曲线的两个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x0 , y0),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3﹣3x2 , 则可求出f( )+f( )+f( )+…+f( )+f( )的值为(
A.4029
B.﹣4029
C.8058
D.﹣8058

查看答案和解析>>

同步练习册答案