精英家教网 > 高中数学 > 题目详情

对任意的x≥1时总有f(x)=a-x-|lgx|≤0,则a的取值范围是


  1. A.
    [0,+∞)
  2. B.
    [1,+∞)
  3. C.
    (-∞,1]
  4. D.
    [0,1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意的x∈R,总有f(x)-x≥0,并且当x∈(0,2)时f(x)≤(
x+12
)2
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
f(x1)+f(x2)
2
≤f(
x1+x2
2
)成立,则称函数y=f(x)为区间D上的凸函数.
(1)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(2)设f(x)=ax2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省汉中市勉县一中高一(上)期中数学试卷(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意的x∈R,总有f(x)-x≥0,并且当x∈(0,2)时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意的x∈R,总有f(x)-x≥0,并且当x∈(0,2)时f(x)≤(
x+1
2
)2
,求f(x)的解析式.

查看答案和解析>>

同步练习册答案