精英家教网 > 高中数学 > 题目详情
13.求顶点在X轴,且两顶点的距离是8,$e=\frac{5}{4}$的双曲线标准方程.

分析 先由两顶点间的距离确定a值,由离心率及a、b、c的关系求出b的值.

解答 解:已知双曲线中心在原点,顶点在x轴上,两顶点间的距离是8,
则焦点在x轴上,且a=4,$e=\frac{5}{4}$,即c:a=5:4,
解得c=5,b=3,
则双曲线的标准方程是$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}$=1.

点评 本题主要考查椭圆的标准方程、求双曲线标准方程.要注意双曲线与椭圆a、b、c三者关系的不同,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若点A(x1,y1)、B(x2,y2)同时满足一下两个条件:
(1)点A、B都在函数y=f(x)上;
(2)点A、B关于原点对称;
则称点对((x1,y1),(x2,y2))是函数f(x)的一个“姐妹点对”.
已知函数$f(x)=\left\{\begin{array}{l}x-4\;\;\;\;({x≥0})\\{x^2}-2x\;\;({x<0})\;\end{array}\right.$,则函数f(x)的“姐妹点对”是(1,-3),(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若点(5,b)在两条平行直线$3x-4y+\frac{1}{2}=0$与6x+8y+10=0之间,则整数b的值为(  )
A.5B.-5C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线y2=4x与直线y=-2x+4所围成的面积为$\frac{86}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.分别求满足下列条件的方程:
(1)求长轴在y轴上,长轴长等于12,离心率等于$\frac{2}{3}$的椭圆的标准方程;
(2)抛物线的对称轴是x轴,且顶点与焦点的距离等于4,求这个抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设l表示空间中的一条直线,α,β表示两个不重合的平面,从“∥、⊥”中选择适当的符号填入下列空格,使其成为正确的命题:$\left.\begin{array}{l}{l___α}\\{α___β}\end{array}\right\}⇒$l⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.由直线y=x+2上的点P向圆C:(x-4)2+(y-2)2=1引切线PT(T为切点),当|PT|的值最小时,点P的坐标是(  )
A.(-1,1)B.(0,2)C.(-2,0)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线kx-y-1=0与圆x2+y2-2y=0有公共点,则实数k的取值范围是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{3}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是y=f(x)的导函数y=f′(x)的图象,下列判断正确的是(  )
A.在区间(-2,1)内f(x) 是增函数B.在区间(1,3)内f(x) 是减函数
C.在区间(4,5)内f(x) 是增函数D.在x=2时,f(x)取到极小值

查看答案和解析>>

同步练习册答案