【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,满足.
(1)求角C的大小;
(2)设函数f(x)=cos(2x+C),将f(x)的图象向右平移个单位长度后得到函数g(x)的图象,求函数g(x)在区间上的最大值.
【答案】(1);(2)在时,最大值为1
【解析】试题分析:(1)根据由正弦定理及两角和与差角的三角函数可得,可得的值;(2)由函数图象变换可得,由求出 ,和三角函数的有界性可得结果.
试题解析:(1)∵a,b,c是△ABC的内角A,B,C所对的三边,且=,
∴由正弦定理得=,
即(sin A-sin B)cos C=cos Bsin C,
即sin Acos C=sin Bcos C+cos Bsin C=sin(B+C).
∵A+B+C=π,∴sin(B+C)=sin A≠0,∴cos C=1,即cos C=.
∵C是△ABC的内角,∴C=.
(2)由(1)可知f(x)=cos,g(x)=f=cos=cos(2x-).
∵0≤x≤,∴-≤2x-≤,∴g(x)在时,最大值为1
科目:高中数学 来源: 题型:
【题目】已知曲线的方程为(, 为常数).
(1)判断曲线的形状;
(2)设曲线分别与轴, 轴交于点, (, 不同于原点),试判断的面积是否为定值?并证明你的判断;
(3)设直线: 与曲线交于不同的两点, ,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面,底面为梯形,,,且.
(Ⅰ)若点为上一点且,证明:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在 轴上的椭圆过点,离心率为, , 是椭圆的长轴的两个端点(位于右侧),是椭圆在轴正半轴上的顶点.
(1)求椭圆的标准方程;
(2)是否存在经过点且斜率为的直线与椭圆交于不同两点和,使得向量与共线?如果存在,求出直线方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为,( 为参数),以为极点, 轴的正半轴建立极坐标系,曲线是圆心在极轴上且经过极点的圆,射线与曲线交于点
(Ⅰ)求曲线的普通方程及的直角坐标方程;
(Ⅱ)在极坐标系中, 是曲线的两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩阵将直线l:x+y-1=0变换成直线l′.
(1)求直线l′的方程;
(2)判断矩阵A是否可逆?若可逆,求出矩阵A的逆矩阵A-1;若不可逆,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着高等级公路的迅速发展,公路绿化受到高度重视,需要大量各种苗木.某苗圃培植场对100棵“天竺桂”的移栽成活量(单位:棵)与在前三个月内浇水次数间的关系进行研究,根据以往的记录,整理相关的数据信息如图所示:
(1)结合图中前4个矩形提供的数据,利用最小二乘法求关于的回归直线方程;
(2)用表示(1)中所求的回归直线方程得到的100棵“天竺桂”的移栽成活量的估计值,当图中余下的矩形对应的数据组的残差的绝对值,则回归直线方程有参考价值,试问:(1)中所得到的回归直线方程有参考价值吗?
(3)预测100棵“天竺桂”移栽后全部成活时,在前三个月内浇水的最佳次数.
附:回归直线方程为,其中, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器由于使用时间较长,生产的零件有一些缺损,按不同转速生产出来的零件有缺损的统计数据如下表所示.
(1)作出散点图;
(2)如果y与x线性相关,求出回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么机器的运转速度应控制在什么范围内?
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺损零件数y(个) | 11 | 9 | 8 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)将函数的图像(纵坐标不变)横坐标伸长为原来的倍,再把整个图像向左平移个单位长度得到的图像.当时,求函数的值域;
(2)若函数在内是减函数,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com