精英家教网 > 高中数学 > 题目详情

【题目】已知正三棱柱ABCA1B1C1的底面边长为,且该三棱柱外接球的表面积为14π,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为(

A.B.C.D.

【答案】A

【解析】

BC中点D,过PPE⊥平面ABC,垂足为E,则EAD在上且为底面ABC的中心,则PE的中点O是该三棱柱外接球的球心,由PE⊥平面ABC,得∠PAEPA与平面ABC所成角,由此能求出结果.

BC中点D,过PPE⊥平面ABC,垂足为E,则EAD在上且为底面ABC的中心,则PE的中点O是该三棱柱外接球的球心,

∵正三棱柱ABCA1B1C1的底面边长为

AE

∵该三棱柱外接球的表面积为14π,∴该三棱柱外接球的半径R

PE22

PE⊥平面ABC,∴∠PAEPA与平面ABC所成角,

tanPAE

∴∠PAE

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四个同样大小的球两两相切,点是球上的动点,则直线与直线所成角的正弦值的取值范围为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是九江市20194月至20203月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r0.83,则下列结论错误的是(

A.每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关

B.月温差(月最高气温﹣月最低气温)的最大值出现在10

C.912月的月温差相对于58月,波动性更大

D.每月最高气温与最低气温的平均值在前6个月逐月增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数).

1)求曲线的普通方程;

2)已知点,若曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)将的单调区间和极值;

2)若有两个零点,求的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的“辅助圆”.过椭圆第四象限内一点Mx轴的垂线交其“辅助圆”于点N,当点N在点M的下方时,称点N为点M的“下辅助点”.已知椭圆上的点的下辅助点为(1,﹣1).

1)求椭圆E的方程;

2)若△OMN的面积等于,求下辅助点N的坐标;

3)已知直线lxmyt0与椭圆E交于不同的AB两点,若椭圆E上存在点P,使得四边形OAPB是对边平行且相等的四边形.求直线l与坐标轴围成的三角形面积最小时的m2+t2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数ae2x+(a﹣2) exx.

(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:

企业成立年份

2019

2018

2017

2016

2015

企业成立年限

1

2

3

4

5

倒闭企业数量(万家)

5.28

4.72

3.58

2.70

2.15

倒闭企业所占比例

21.4%

19.1%

14.5%

10.9%

8.7%

1)由所给数据可用线性回归模型拟合的关系,请用相关系数加以说明;

2)建立关于的回归方程,预测年成立的企业中倒闭企业所占比例.

参考数据:

相关系数,样本的最小二乘估计公式为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数有最大值,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

同步练习册答案