精英家教网 > 高中数学 > 题目详情

【题目】已知是抛物线上的两点,若直线过抛物线的焦点且倾斜角为.在准线上的射影.则下列命题正确的是(

A.B.

C.D.为锐角三角形.

【答案】ABC

【解析】

对于选项A,设直线的方程为,代入,再利用韦达定理,即可得到结论;

对于选项B,利用抛物线的定义和选项A中的结论,表示出即可;

对于选项C,由抛物线的定义,在直角三角形中,运用余弦函数的定义,即可得到的长,同理可得的长,即可判断;

对于选项D,由在准线上的射影,可求出,进而判断D错误.

解:对于选项A,设直线的方程为,代入

可得,所以,选项A正确;

对于选项B,因为是过抛物线的焦点的弦,

所以由抛物线定义可得

由选项A知,

所以.

,解得

时,,所以

时,,所以

时,也适合上式,所以,选项B正确;

对于选项C

所以,同理可得

所以,选项C正确;

对于选项D,由抛物线的定义可知,,则.

因为,所以,则.

同理可得.

因为

所以.

所以为直角三角形,选项D错误.

故选:ABC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,现用一种新配方做试验,生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:

质量指标值

频数

6

26

38

22

8

(1)将答题卡上列出的这些数据的频率分布表填写完整,并补齐频率分布直方图;

(2)估计这种产品质量指标值的平均值(同一组中的数据用该组区间的中点值作代表)与中位数(结果精确到0.1).

质量指标值分组

频数

频率

6

0.06

合计

100

1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:

考试情况

男学员

女学员

第1次考科目二人数

1200

800

第1次通过科目二人数

960

600

第1次未通过科目二人数

240

200

若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.

(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;

(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆上顶点为A,右焦点为F,直线与圆相切,其中.

1)求椭圆的方程;

2)不过点A的动直线l与椭圆C相交于PQ两点,且,证明:动直线l过定点,并且求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为丰富市民的文化生活,市政府计划在一块半径为100m的扇形土地OAB上建造市民广场.规划设计如图:矩形EFGH(其中E,F在圆弧AB上,G,H在弦AB上)区域为运动休闲区,△OAB区域为文化展示区,其余空地为绿化区域,已知P为圆弧AB中点,OPABM,cos∠POB=,记矩形EFGH区域的面积为Sm2

(1)设∠POF=θ(rad),将S表示成θ的函数;

(2)求矩形EFGH区域的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和点.

(1)若点是圆上任意一点,求

(2)过圆 上任意一点 与点的直线,交圆于另一点,连接,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂加工一批零件,加工过程中会产生次品,根据经验可知,其次品率与日产量(万件)之间满足函数关系式已知每生产1万件合格品可获利2万元,但生产1万件次品将亏损1万元.(次品率=次品数/生产量).

(1)试写出加工这批零件的日盈利额(万元)与日产量(万件)的函数;

(2)当日产量为多少时,可获得最大利润?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体中,分别为棱的中点,是线段上的点,且,若分别为线段上的动点,则的最小值为__________

查看答案和解析>>

同步练习册答案