精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求f(x)的值域;
(2)如果当x∈[2,5]时,f(x)≥g(x)恒成立,求实数m的取值范围.

解:(1)∵x>0,∴f(x)==x+-6≥2-6,当且仅当x=时取等号,
所以函数f(x)的值域为[2-6,+∞).
(2)当x∈[2,5]时,f(x)≥g(x)恒成立,即x2-6x+3≥m,x∈[2,5]恒成立,
又x2-6x+3=(x-3)2-6≥-6,
所以-6≥m,即实数m的取值范围为(-∞,-6].
分析:(1)f(x)==x+-6,利用基本不等式即可求出其最小值,从而得到其值域;
(2)当x∈[2,5]时,f(x)≥g(x)恒成立,等价于x2-6x+3≥m,x∈[2,5]恒成立,从而转化为求x2-6x+3的最小值问题.
点评:本题考查基本不等式的应用及函数恒成立问题,运用基本不等式求最值要注意使用条件:一正、二定、三相等.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年浙江省杭州市富阳市场口中学高三(上)8月月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最大值及取得最大值时的x集合;
(2)设△ABC的角A,B,C的对边分别为a,b,c,且a=1,f(A)=0.求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市海淀区高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)求f(f(3))的值;
(2)判断函数在(1,+∞)上单调性,并用定义加以证明.
(3)当x取什么值时,的图象在x轴上方?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省常州高级中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期和值域;
(2)若x=x为f(x)的一个零点,求sin2x的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省莆田市仙游一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)求f(x)的单调递减区间;
(3)函数f(x)的图象经过怎样的平移才能使其对应的函数成为奇函数?

查看答案和解析>>

科目:高中数学 来源:2011年江苏省连云港市赣榆高级中学高三3月调研数学试卷(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期及对称中心;
(2)若,求f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案