分析 (1)将数列递推式两边同时加上2,化简后再作商可得数列{an+2}是等比数列,从而可求出数列{an}的通项公式,
(2)根据错位相减法求和即可.
解答 解:(1)由题意知an+1=2an+2,则an+1+2=2an+4=2(an+2),
∵a1=1,
∴a1+2=3,
∴数列{an+2}是以3为首项,以2为公比的等比数列,
∴an+2=3×2n-1,
则an=3×2n-1-2,
(2)bn=n(an+2)=3n×2n-1,
∴$\frac{1}{3}$Tn=1×20+2×21+3×22+…+n×2n-1,
∴$\frac{2}{3}$Tn=1×21+2×22+3×23+…+(n-1)2n-1+n×2n,
∴-$\frac{1}{3}$Tn=1+21+22+23+…+2n-1-n×2n=$\frac{1-{2}^{n}}{1-2}$-n×2n=2n(1-n)-1,
∴Tn=2n(3n-3)+3.
点评 本题考查了构造新的等比数列求出通项问题,数列的递推公式为:an+1=Aan+B,其中A和B是常数,构造出 an+1+k=A(an+k)式子,再证明数列{an+k}是等比数列即可,以及错位相减法求和,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | A,B两点在平面α的同侧 | B. | A,B两点在平面α的异侧 | ||
C. | 过A,B两点必有垂直于平面α的平面 | D. | 过A,B两点必有平行于平面α的平面 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com