试题分析:(1)要使得AC∥平面DMF,需要使得AC平行平面DMF内的一条直线.为了找这条直线,需要作一个过AC而与平面DMF相交的平面.为此,连结CE,交DF于N,连结MN,这样只要AC∥MN即可.因为N为线段DF的中点,所以只需M是线段AE的中点即可.
(2)思路一、(综合法)首先作出它们的交线.过点D作平面DMF与平面ABCD的交线l,由于AC∥平面DMF,由线面平行的性质定理知AC∥l.为了求二面角,首先作出其平面角.作平面角第一步是过其中一个面内一点作另一个面的垂线,而要作垂线先作垂面.在本题中,由于平面
平面
,所以过点M作MG⊥AD于G,因为平面ABCD⊥平面CDEF,DE⊥CD,所以DE⊥平面ABCD,则平面ADE⊥平面ABCD,所以MG⊥平面ABCD,过G作GH⊥l于H,连结MH,则直线l⊥平面MGH,所以l⊥MH,故∠MHG是平面MDF与平面ABCD所成锐二面角的平面角.在直角三角形MHG中求得可∠MHG的余弦值.(另外也可过点C作直线l的垂线)思路二、因为平面ABCD⊥平面CDEF,DE⊥CD,所以DE⊥平面ABCD,可知AD,CD,DE两两垂直,所以可分别以
,
,
的方向为x,y,z轴,建立空间直角坐标系O-xyz.然后利用空间向量求解.
(1)当M是线段AE的中点时,AC∥平面DMF.
证明如下:
连结CE,交DF于N,连结MN,
由于M、N分别是AE、CE的中点,所以MN∥AC,
由于MN
平面DMF,又AC
平面DMF,
所以AC∥平面DMF. 4分
(2)方法一、过点D作平面DMF与平面ABCD的交线l,由于AC∥平面DMF,可知AC∥l,
过点M作MG⊥AD于G,
因为平面ABCD⊥平面CDEF,DE⊥CD,
所以DE⊥平面ABCD,则平面ADE⊥平面ABCD,
所以MG⊥平面ABCD,
过G作GH⊥l于H,连结MH,则直线l⊥平面MGH,所以l⊥MH,
故∠MHG是平面MDF与平面ABCD所成锐二面角的平面角. 8分
设
,则
,
,
,则
, 11分
所以
,即所求二面角的余弦值为
. 12分
方法二、因为平面ABCD⊥平面CDEF,DE⊥CD,所以DE⊥平面ABCD,可知AD,CD,DE两两垂直,分别以
,
,
的方向为x,y,z轴,建立空间直角坐标系O-xyz.
设
,则
,
,
,
,
设平面MDF的法向量
,
则
所以
令
,得平面MDF的一个法向量
, 8分
取平面ABCD的法向量
, 9分
由
, 11分
故平面MDF与平面ABCD所成锐二面角的余弦值为
. 12分