精英家教网 > 高中数学 > 题目详情

【题目】在如图(1)所示的四边形中,.将沿折起,使二面角为直二面角(如图(2)),的中点.

(1)求证:平面

(2)求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】

(1)由题意可得平面,故 . 以为坐标原点,分别以轴、轴、轴建立如图所示空间直角坐标系,明确平面BOP的法向量与AD的方向向量,利用二者共线,即可证得;

2)求出平面的法向量,利用法向量的夹角余弦即可得到二面角的余弦值.

(1)证明:由题,知.

又∵二面角为直二面角,∴平面.

又∵平面,∴.

为坐标原点,分别以轴、轴、轴建立如图所示空间直角坐标系.

∴由平面几何知识,可得.

的中点,∴.

设平面的法向量为.

,则.∴.

又∵,∴.

平面.

(2)解:设中点,连接,如图.

平面平面

∴平面平面,交线为.

又∵为等边三角形,∴.

又∵平面.∴平面.∴是平面的法向量.

.

∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若质地均匀的六面体玩具各面分别标有数字1,2,3,4,5,6.抛掷该玩具后,任何一个数字所在的面朝上的概率均相等.抛掷该玩具一次,记事件A=“向上的面标记的数字是完全平方数(即能写出整数的平方形式的数,如9=32,9是完全平方数)

(1)甲、乙二人利用该玩具进行游戏,并规定:①甲抛掷一次,若事件A发生,则向上一面的点数的6倍为甲的得分;若事件A不发生,则甲得0分;②乙抛掷一次,将向上的一面对应的数字作为乙的得分。现甲、乙二人各抛掷该玩具一次,分别求二人得分的期望;

(2)抛掷该玩具一次,记事件B=“向上一面的点数不超过,若事件AB相互独立,试求出所有的整数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了24亩,所得亩产数据(单位:千克)如下:

品种A:357359367368375388392399400405412414415421423423427430430434443445451454

品种B363371374383385386391392394395397397400401401403406407410412415416422430

1)画出茎叶图.

2)用茎叶图处理现有的数据,有什么优点?

3)通过观察茎叶图,对品种AB的亩产量及其稳定性进行比较,写出统计结论。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,的中点,以为折痕将向上折起,变为,且平面平面.

(Ⅰ)求证:

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为,且对任意,,且当.

1)证明:是奇函数;

2)证明:上是减函数;

3)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,

1)若不等式的解集为,求的值;

2)若,求的最小值.

3)若 求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形

为矩形,平面平面.

I)求证:平面

II)点在线段上运动,设平面与平面所成二面角的平面角为

试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,是边长等于2的等边三角形,四边形是菱形,是棱上的点,.分别是的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案