精英家教网 > 高中数学 > 题目详情

【题目】已知命题 方程 有两个不相等的负实根,

命题 不等式 的解集为

(1)若为真命题,求 的取值范围.

(2)若 为真命题, 为假命题,求 的取值范围.

【答案】(1);(2).

【解析】

若命题p为真命题,可得,解得m.若命题q为真命题,m>0△<0,解得m 为真命题, 为假命题,可得p与q必然一真一假,解出即可.

为真命题,即 不等式 的解集非空

取并集即.

(2) 若命题 真,则有 , 解得 若命题 真,由(1)

根据 为真命题, 为假命题,可得命题 和命题 一个为真,另一个为假.当命题 为真、命题 为假时,.当命题 为假、命题 为真时,

综上可得, 的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】.已知函数.

(1)求过点图象的切线方程;

(2)若函数存在两个极值点 ,求的取值范围;

(3)当时,均有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= (a>0,且a≠1)的值域为(﹣∞,+∞),则实数a的取值范围是(
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面积为5 ,b=5,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化肥厂生产甲、乙两种混合肥料,需要ABC三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:

现有A种原料200吨,B种原料360吨,C种原料300吨.在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用xy表示计划生产甲、乙两种肥料的车皮数.

(1)用xy列出满足生产条件的数学关系式,并画出相应的平面区域;

(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面积为5 ,b=5,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表是一个由n2个正数组成的数表,用aij表示第i行第j个数(i,j∈N),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a11=1,a31+a61=9,a35=48.

(1)求an1和a4n
(2)设bn= +(﹣1)na (n∈N+),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,设动点满足.

1)求动点的轨迹的方程;

2)若直线与曲线相交于 两个不同点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.

(1)求证:直线恒过定点;

(2)当直线被圆截得的弦长最短时,求直线的方程;

(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.

查看答案和解析>>

同步练习册答案