精英家教网 > 高中数学 > 题目详情
16.将函数f(x)=$\sqrt{3}$sin3x+cos3x的图象向左平移$\frac{π}{6}$个单位得到函数g(x)的图象,关于函数g(x),下列说法正确的是(  )
A.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函数
B.其图象关于直线x=-$\frac{π}{4}$对称
C.函数g(x)是奇函数
D.当x$∈[\frac{π}{3},\frac{4π}{9}]$时,函数g(x)的值域是[-$\sqrt{3}$,0]

分析 由题意可得f(x)=2sin(3x+$\frac{π}{6}$),g(x)=2sin(3x+$\frac{2π}{3}$),
A,由2kπ-$\frac{π}{2}$≤3x+$\frac{2π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,可求单调递增区间,可得错误;
B,由3x+$\frac{2π}{3}$=kπ+$\frac{π}{2}$,k∈Z可解得对称轴方程,可得错误;
C,g(-x)≠-g(x),可得错误;
D,可求3x+$\frac{2π}{3}$∈[$\frac{5π}{3}$,2π],利用正弦函数的图象和性质即可解得值域,可得正确.

解答 解:由题意可得:f(x)=$\sqrt{3}$sin3x+cos3x=2($\frac{\sqrt{3}}{2}$sin3x+$\frac{1}{2}$cos3x)=2sin(3x+$\frac{π}{6}$),
将图象向左平移$\frac{π}{6}$个单位得到函数g(x)=2sin[3(x+$\frac{π}{6}$)+$\frac{π}{6}$]=2sin(3x+$\frac{2π}{3}$),
A,由2kπ-$\frac{π}{2}$≤3x+$\frac{2π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,解得单调递增区间为:[$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$-$\frac{π}{18}$],k∈Z,可得错误;
B,由3x+$\frac{2π}{3}$=kπ+$\frac{π}{2}$,k∈Z可解得对称轴方程为:x=$\frac{kπ}{3}-\frac{π}{18}$,k∈Z,故错误;
C,g(-x)=2sin(-3x+$\frac{2π}{3}$)≠-g(x),故错误;
D,当x$∈[\frac{π}{3},\frac{4π}{9}]$时,3x+$\frac{2π}{3}$∈[$\frac{5π}{3}$,2π],g(x)=2sin(3x+$\frac{2π}{3}$)∈[-$\sqrt{3}$,0],故正确.
故选:D.

点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换,正弦函数的图象和性质,考查了计算能力和数形结合能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若x>0,则函数y=-x-$\frac{1}{x}$(  )
A.有最大值-2B.有最小值-2C.有最大值2D.有最小值2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知二次函数f(x)=x2+ax+4在(-∞,1)上是减函数,则实数a的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(α)=$\frac{sin(π-α)cos(2π-α)cos(-α+\frac{3π}{2})}{cos(\frac{π}{2}-α)sin(-π-α)}$.求f(-$\frac{31π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆方程$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1.
(I)写出椭圆的顶点坐标;
(2)点P($\frac{12}{5}$,4)为椭圆上一点,求点P与两个焦点F1,F2之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的点,且|BD|=2|DC|,则$\overrightarrow{AD}$•$\overrightarrow{BC}$的值为(  )
A.0B.1C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|1≤x<3},B={y|y≤m},且A∩B=∅,则实数m应满足(  )
A.m<1B.m≤1C.m≥3D.m>3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设数列{an}的前n项和为Sn,且Sn=2(an-1),则an=(  )
A.2nB.2n-1C.2nD.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)对任意x∈R都有f(x+4)-f(x)=2f(2),若y=f(x-1)的图象关于直线x=1对称,则f(402)=(  )
A.2B.3C.4D.0

查看答案和解析>>

同步练习册答案