精英家教网 > 高中数学 > 题目详情
4.在数列{an}中,a1=2,an+1=an+$\frac{1}{n(n+1)}$,求数列{an}的通项公式.

分析 把已知的数列递推式变形,然后利用累加法求n≥2时的通项公式,验证首项后得答案.

解答 解:由an+1=an+$\frac{1}{n(n+1)}$,得${a}_{n+1}-{a}_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴${a}_{2}-{a}_{1}=1-\frac{1}{2}$,
${a}_{3}-{a}_{2}=\frac{1}{2}-\frac{1}{3}$,
${a}_{4}-{a}_{3}=\frac{1}{3}-\frac{1}{4}$,

${a}_{n}-{a}_{n-1}=\frac{1}{n-1}-\frac{1}{n}$(n≥2),
累加得:${a}_{n}={a}_{1}+1-\frac{1}{n}$,
∵a1=2,
∴${a}_{n}=2+\frac{n-1}{n}$(n≥2).
∴${a}_{n}=\left\{\begin{array}{l}{2,n=1}\\{2+\frac{n-1}{n},n≥2}\end{array}\right.$.

点评 本题考查数列递推式,考查了累加法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,已知M、N分别是AB、AC的中点,用向量方法证明:MN$\stackrel{∥}{=}$$\frac{1}{2}$BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}中,a1=1,anan+1=2n(n∈N*
(1)求证数列{an}不是等比数列,并求该数列的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{m}^{2}}$+y2=1,(m>0),直线l不过原点且不行于坐标轴,与椭圆C有两个交点P,Q,线段的中点为M,若直线l的斜率与OM的斜率的乘积为-$\frac{1}{2}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过椭圆的右焦点,椭圆C的上顶点为A,设直线AP,AQ分别交直线x-y-2=0于点S,T,求当|ST|最小时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知曲线$\frac{|x|}{2}$-$\frac{|y|}{2}$=1与直线y=2x+m有两个交点,则m的取值范围是(  )
A.(-∞,-4)∪(4,+∞)B.(-4,4)C.(-∞,-3)∪(3,+∞)D.(-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.给出下列关于椭圆的真命题,试类比推理给出双曲线中类似的命题,并画出命题中的图.
(1)椭圆中以焦半径为直径的圆与长轴为直径的圆相切(此圆与椭圆内切);
(2)椭圆互相垂直的焦点弦倒数之和为常数$\frac{1}{|AB|}$+$\frac{1}{|CD|}$=$\frac{2-{e}^{2}}{2ep}$;
(3)设椭圆焦点弦AB的中垂线交长轴于点D,则|DF|与|AB|之比为离心率的一半(F为焦点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.山脚平地上有一条笔直的公路,在公路上A,B,C三点依次测得山顶P的仰角为30°,45°,60°,已知AB=BC=1km,求山高PH.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,若点P在椭圆上,且$\overrightarrow{P{F}_{1}}$ $•\overrightarrow{P{F}_{2}}$=0,则椭圆离心率的取值范围是$[\frac{\sqrt{2}}{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=$\left\{\begin{array}{l}{cosπx,(x>0)}\\{f(x+1)-1,(x<0)}\end{array}\right.$,则$f(-\frac{4}{3})$的值为(  )
A.-$\frac{5}{2}$B.-$\frac{3}{2}$C.-$\frac{{\sqrt{3}}}{2}$-2D.$\frac{{\sqrt{3}}}{2}$-2

查看答案和解析>>

同步练习册答案