精英家教网 > 高中数学 > 题目详情

(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线相切;(3)求线段MN的长(用表示),并证明M、N两点到直线的距离之和等于线段MN的长.

 

【答案】

(1) ;(2)见解析; (3)

【解析】此题属于二次函数的综合题目,涉及了待定系数法求函数解析式、根与系数的关系,梯形的中位线定理,综合性较强,关键是要求同学们能将所学的知识融会贯通.

(1)设函数解析式为y=ax2+bx+c,然后利用待定系数法求解即可;

(2)设M(x1,y1),N(x2,y2),然后代入抛物线方程,用含y2的式子表示出ON,设ON的中点E,分别过点N、E向直线l、作垂线,垂足为P、F,利用梯形的中位线定理可得出EF,与所求ON的值进行比较即可得出结论;

(3)过点M作MH丄NP交NP于点H,在RT△MNH中表示出MN2,结合直线方程将MN2化简,求出MN,然后延长NP交l2于点Q,过点M作MS丄l2交l2于点S,则MS+NQ=y1+2+y2+2,利用根与系数的关系,求出,并代入,从而可得出结论。

解答:(1)设抛物线对应二次函数的解析式为

 ,解得,所以 ……………………4分

(2)设,因为点M、N在抛物线上,

所以,所以

=,所以ON=,又因为

所以ON

 设ON的中点为E,分别过点N、E向直线作垂线,垂足分别为P、F,

    所以ON=2EF,

即ON的中点到直线的距离等于ON长度的一半, 所以以ON为直径的圆与直线相切.                                           …………………………………9分

(3)过点M作MH⊥NP交NP于点H,则

,所以

所以

又因为点M、N既在的图象上,又在抛物线上,所以,即

所以

所以,所以 所以 

延长NP交于点Q,过点M作MS⊥交于点S,

则MS+NQ=

=所以MS+NQ=

即MN两点到距离之和等于线段MN的长.…………………………………………14

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案