精英家教网 > 高中数学 > 题目详情
16.已知等差数列{an},首项a1>0,a2011+a2012>0,a2011•a2012<0,则使数列{an}的前n项和Sn>0成立的最大正整数n是(  )
A.2011B.2012C.4023D.4022

分析 由题意可得a2011>0,a2012 <0,a2011>|a2012|,判断出数列的单调性和数列中项的正负,可得a1+a4022=a2011+a2012>0,a1+a4023=a2011+a2013 =2a2012<0,再由等差数列的前n项和公式可得S4022>0,S4023<0,由此得到结论.

解答 解:∵等差数列{an}中,a1>0,a2011+a2012>0,a2011•a2012<0,
∴a2011>0,a2012 <0,a2011>|a2012|,
即等差数列{an}首项是正数、公差小于零的递减数列,
则前2011项大于零,从2012项起都小于零,
∴a1+a4022=a2011+a2012>0,a1+a4023=a2011+a2013 =2a2012 <0,
∴S4022 =$\frac{4022({a}_{1}+{a}_{4022})}{2}$>0,S4023 =$\frac{4023({a}_{1}+{a}_{4023})}{2}$<0,
则使Sn>0成立的n的最大值为4022,
故选:D.

点评 本题考查等差数列的性质,等差数列的单调性,以及等差数列的前n项和公式的灵活应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,且Q为AD的中点.PA=PD=AD=2.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)点M在线段PC上,PM=$\frac{1}{3}$PC,若平面PAD⊥平面ABCD,求三棱锥M-PQB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=2sinωx在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值为-2,则ω的取值范围为(-∞,-3]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}中,a3=2,a7=1,又数列$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差数列,则a8=(  )
A.$\frac{11}{13}$B.0C.$\frac{2}{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设a,b是不共线的两个向量,已知$\overrightarrow{AB}$=2a+kb,$\overrightarrow{BC}$=a+b,$\overrightarrow{CD}$=a-2b,若A、B、D三点共线,则k的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{|x+7|+|x-1|-m}$的定义域为R.
(Ⅰ)求m的取值范围;
(Ⅱ)当m取最大值时,解关于x的不等式|x-3|-2x<2m-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式x(9-x)>0的解集是(0,9).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线C1:y=ax3-6x2+12x(a≠0)与曲线C2:y=ex.若曲线C1有极值,则a的范围是a<1且a≠0;若曲线C1和C2在x=1处的两条切线互相垂直,则实数a的值为-$\frac{1}{3e}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过点A(-1,-2)且到原点距离为1的直线方程为x=-1或3x-4y-5=0.

查看答案和解析>>

同步练习册答案