精英家教网 > 高中数学 > 题目详情

已知定义在上的函数,其中为常数.
(1)若是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求的取值范围.

(1)  (2)

解析试题分析:(1)
由已知
经检验:时,的极大值点。           
(2)由已知,可得,都有成立,
.   
考点:函数在某点取得极值的条件;利用导数研究函数的单调性.
点评:本题考查了利用导数研究函数在某点取得极值的条件、函数单调性的性质及证明,其中熟练掌握函数单调性与导函数符号之间的关系是解答本题的关键.另外还有分类讨论的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 , .  
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)当时,函数上的最大值为,若存在,使得成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求实数的取值范围;
(3)若对任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最大值;
(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,e是自然对数的底数.
(Ⅰ)当时,证明恒成立;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论的单调性;
(2)若上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数在区间上是增函数,在区间上是减函数,又
(1)求的解析式;
(2)若在区间上恒有成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)若函数处的切线与轴垂直,求的极值。
(2)若函数,求实数a的值。

查看答案和解析>>

同步练习册答案