精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形是正方形, 平面分别为的中点,且.

(1)求证:平面平面

(2)求证:平面P

【答案】(1)证明过程详见解析(2)证明过程详见解析;

【解析】

(1)由三角形中位线定理可得,由正方形的性质可得,由线面平行的判定定理可得平面平面,从而可得结果;(2)由线面垂直的性质证明,正方形的性质可得,结合,可得平面,从而可得平面平面

(1)∵分别为的中点,

又∵四边形是正方形,

,∴

在平面外, 在平面内,

平面平面

又∵都在平面内且相交,

∴平面平面.

(2)证明:由已知平面

平面.

平面,∴.

∵四边形为正方形,∴

,∴平面

中,∵分别为的中点,

,∴平面.

平面,∴平面平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】D是含数1的有限实数集,f(x)是定义在D上的函数。若f(x)的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,f(1)的取值只可能是( )

A. B. C. D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,D为边BC上一点,AD=6,BD=3, DC=2.

(1)若AD⊥BC,求∠BAC的大小;
(2)若∠ABC= ,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 数列{bn},{cn}满足 (n+1)bn=an+1 ,(n+2)cn= ,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn , 求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:

月份

违章驾驶员人数

(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程

(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某抛掷骰子游戏中,规定游戏者可以有三次机会抛掷一颗骰子若游戏者在前两次抛掷中至少成功一次才可以进行第三次抛掷,其中抛掷骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4.游戏规则如下:抛掷1枚骰子,第1次抛掷骰子向上的点数为奇数则记为成功,第2次抛掷骰子向上的点数为3的倍数则记为成功,第3次抛掷骰子向上的点数为6则记为成功.用随机变量表示该游戏者所得分数.

(1)求该游戏者有机会抛掷第3次骰子的概率;

(2)求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 1个自然数随机填入n×n方格的个方格中,每个方格恰填一个数().对于同行或同列的每一对数,都计算较大数与较小数的比值,在这个比值中的最小值,称为这一填数法的特征值”.

(1),请写出一种填数法,并计算此填数法的特征值”;

(2)时,请写出一种填数法,使得此填数法的特征值

(3)求证:对任意一个填数法,其特征值不大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

(2)若参赛选手共万人,用频率估计概率,试估计其中优秀等级的选手人数;

查看答案和解析>>

同步练习册答案