【题目】如图:设一正方形纸片ABCD边长为2分米,切去阴影部分所示的四个全等的等腰三角形,剩余为一个正方形和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中,O为正四棱锥底面中心.
(Ⅰ)若正四棱锥的棱长都相等,求这个正四棱锥的体积V;
(Ⅱ)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积S表示为x的函数,并求S的范围.
【答案】(1)立方分米(2)平方分米
【解析】试题分析: (I)若正四棱锥的棱长都相等,则在正方形ABCD中,三角形APQ为等边三角形,由此先计算出此正四棱锥的棱长,再利用正棱锥的性质计算其体积即可;
(II)先利用等腰三角形APQ的底角为x的特点,将侧棱长和底边长分别表示为x的函数,再利用棱锥的体积计算公式将棱锥体积表示为关于x的函数,最后可利用均值定理求函数的值域
试题解析:
(Ⅰ)设正四棱锥底面边长为y分米,由条件知△APQ为等边三角形,
又,∴.
∵,∴.
由,即得.
∴ .
答:这个正四棱锥的体积是立方分米
(Ⅱ)设正四棱锥底面边长为y,则.
由,即得.
∴即为所求表达式.
∵,∴,
令,则,
由对恒成立知函数在上为减函数.
(或者分子、分母同时除以,利用“对勾函数”进行说明)
∴平方分米即为所求侧面积的范围.
科目:高中数学 来源: 题型:
【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M的圆心在直线上,且经过点A(-3,0),B(1,2).
(1)求圆M的方程;
(2)直线与圆M相切,且在y轴上的截距是在x轴上截距的两倍,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面为正方形, 底面, 为棱的中点.
(1)证明: ;
(2)求直线与平面所成角的正弦值;
(3)若为中点,棱上是否存在一点,使得,若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】旅游社为某旅游团包飞机去旅游,其中旅行社的包机费为15 000元.旅游团中每人的飞机票按以下方式与旅行社结算:若旅游团人数在30人或30人以下,飞机票每张收费900元;若旅游团人数多于30人,则给予优惠,每多1人,机票费每张减少10元,但旅游团人数最多为75人.
(1)写出飞机票的价格关于旅游团人数的函数;
(2)旅游团人数为多少时,旅行社可获得最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).
(1)当甲城市投资50万元时,求此时公司总收益;
(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2.
(1)求证:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值为 ,求斜三棱柱ABC﹣A1B1C1的侧棱AA1的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com