【题目】已知函数.
(1)当,求函数的单调区间;
(2)若函数在上是减函数,求的最小值;
(3)证明:当时,.
【答案】(1)单调递减区间是,,单调递增区间是(2)的最小值为(3)见解析
【解析】分析:(1)代入,根据导函数的符号判断函数的单调区间。
(2)由单调递减区间,得到恒成立。进而确定只需当时,即可,对导函数配方,利用二次函数性质求得最大值,进而得出的最小值。
(3)函数变形,构造函数,求导函数。构造函数,则,根据导函数的单调性求其最值,即可证明不等式。
详解:函数的定义域为,
详解:函数的定义域为,
(1)函数,
当且时,;当时,,
所以函数的单调递减区间是,,单调递增区间是.
(2)因在上为减函数,故在上恒成立.
所以当时,.
又 ,
故当,即时,.
所以,于是,故的最小值为.
(3)问题等价于.
令,则,
当时,取最小值.
设,则,知在上单调递增,在上单调递减.
∴,
∵ ,
∴,∴,
故当时,.
科目:高中数学 来源: 题型:
【题目】(选修4﹣5:不等式选讲)
已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当 时,f(x)≤g(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若, 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;
(2)若, 都是从区间上任取的一个数,求成立的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在上海自贸区的利好刺激下,公司开拓国际市场,基本形成了市场规模;自2014年1月以来的第个月(2014年1月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量+出口量)分别为、和(单位:万件),依据销售统计数据发现形成如下营销趋势:,(其中,为常数,),已知万件,万件,万件.
(1)求,的值,并写出与满足的关系式;
(2)证明:逐月递增且控制在2万件内;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为- .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com