精英家教网 > 高中数学 > 题目详情

【题目】某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.

1)估计这100人体重数据的平均值和样本方差(结果取整数,同一组中的数据用该组区间的中点值作代表)

2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;

3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.

【答案】160252)见解析,2.13)可以认为该校学生的体重是正常的.见解析

【解析】

1)根据频率分布直方图可求出平均值和样本方差

2)由题意知服从二项分布,分别求出,进而可求出分布列以及数学期望;

3)由第一问可知服从正态分布,继而可求出的值,从而可判断.

解:(1

2)由已知可得从全校学生中随机抽取1人,体重在的概率为0.7.

随机拍取3人,相当于3次独立重复实验,随机交量服从二项分布

所以的分布列为:

0

1

2

3

0.027

0.189

0.441

0.343

数学期望

3)由题意知服从正态分布

所以可以认为该校学生的体重是正常的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数.

1)求函数的零点个数;

2)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)若,求函数的极值;

(Ⅱ)设.上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,都垂直于平面,且.

1)证明:平面

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xyz均为正数.

1)若xy1,证明:|x+z||y+z|4xyz

2)若,求2xy2yz2xz的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究日平均走步数和性别是否有关,统计了20191月份所有用户的日平均步数,规定日平均步数不少于8000的为运动达人,步数在8000以下的为非运动达人,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:

运动达人

非运动达人

总计

35

60

26

总计

100

1)(i)将列联表补充完整;

ii)据此列联表判断,能否有的把握认为日平均走步数和性别是否有关

2)从样本中的运动达人中抽取7人参加幸运抽奖活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的导数的单调性;

2)若有两个极值点,求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面是梯形.BCADABBCCD1AD2

(Ⅰ)证明;ACBP

(Ⅱ)求直线AD与平面APC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(Ⅰ)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,能否在犯错误概率不超过0.005的前提下,认为是否为“移动支付活跃用户”与性别有关?

(Ⅱ)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.

①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;

②为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为,求的分布列及数学期望.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案