精英家教网 > 高中数学 > 题目详情
16.已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函数.
(1)确定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(-1,1)上有零点,求a的取值范围;
(3)若对任意的t∈(-4,4),不等式f(6t-3)+f(t2-k)<0恒成立,求实数k的取值范围.

分析 (1)设g(x)=ax(a>0且a≠1),由g(3)=8可确定y=g(x)的解析式,故y=$f(x)=\frac{{n-{2^x}}}{{m+{2^{x+1}}}}$,依题意,f(0)=0可求得n,从而可得y=f(x)的解析式;
(2)若h(x)=f(x)+a在(-1,1)上有零点,利用零点存在定理,由h(-1)h(1)<0,可求a的取值范围;
(3)由(2)知奇函数f(x)在R上为减函数,对任意的t∈(-4,4),不等式f(6t-3)+f(t2-k)<0恒成立?6t-3>k-t2,分离参数k,利用二次函数的单调性可求实数k的取值范围.

解答 (本小题12分)
(1)设g(x)=ax(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2.
∴g(x)=2x.…(1分)
∴$f(x)=\frac{{n-{2^x}}}{{m+{2^{x+1}}}}$,
∵函数f(x)是定义域为R的奇函数,∴f(0)=0,∴$\frac{n-1}{2+m}=0$=0,∴n=1,
∴$f(x)=\frac{{1-{2^x}}}{{m+{2^{x+1}}}}$又f(-1)=f(1),∴$\frac{{1-\frac{1}{2}}}{m+1}=-\frac{1-2}{4+m}$=,解得m=2
∴$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}$.…(3分)
(2)由(1)知$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}=-\frac{1}{2}+\frac{1}{{{2^x}+1}}$,
易知f(x)在R上为减函数,…(4分)
又h(x)=f(x)+a在(-1,1)上有零点,
从而h(-1)h(1)<0,即$({-\frac{1}{2}+\frac{1}{{\frac{1}{2}+1}}+a})({-\frac{1}{2}+\frac{1}{2+1}+a})<0$,…(6分)
∴(a+$\frac{1}{6}$)(a-$\frac{1}{6}$)<0,
∴-$\frac{1}{6}$<a<$\frac{1}{6}$,
∴a的取值范围为(-$\frac{1}{6}$,$\frac{1}{6}$);…(8分)
(3)由(1)知$f(x)=\frac{{1-{2^x}}}{{2+{2^{x+1}}}}=-\frac{1}{2}+\frac{1}{{{2^x}+1}}$,
又f(x)是奇函数,∴f(6t-3)+f(t2-k)<0,
∴f(6t-3)<-f(t2-k)=f(k-t2),
∵f(x)在R上为减函数,由上式得6t-3>k-t2,…(10分)
即对一切t∈(-4,4),有t2+6t-3>k恒成立,
令m(t)=t2+6t-3,t∈(-4,4),易知m(t)>-12,…(11分)
∴k<-12,即实数k的取值范围是(-∞,-12).…(12分)

点评 本题考查函数恒成立问题,考查函数奇偶性与单调性的应用,考查零点存在定理及二次函数的性质,考查函数方程思想、转化思想与运算求解能力,属于综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某同学为实现“给定正整数N,求最小的正整数i,使得7i>N,”设计程序框图如右,则判断框中可填入(  )
A.x≤NB.x<NC.x>ND.x≥N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设实数x,y满足$\left\{\begin{array}{l}{y≤2x-2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则$\frac{y-1}{x+3}$的取值范围是(  )
A.(-∞,$\frac{1}{5}$]B.[-$\frac{1}{5}$,1]C.(-$\frac{1}{5}$,$\frac{1}{3}$]D.($\frac{1}{3}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a>b>0,a+b=1,x=-($\frac{1}{a}$)b,y=logab($\frac{1}{a}$+$\frac{1}{b}$),z=logba,则(  )
A.y<xzB.x<z<yC.z<y<xD.x<y<z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.据调查分析,若干年内某产品关税与市场供应量P的关系近似地满足:y=P(x)=2${\;}^{(1-kt)(x-b)^{2}}$,(其中,t为关税的税率,且t∈[0,$\frac{1}{2}$),x为市场价格,b,k为正常数),当t=$\frac{1}{8}$时的市场供应量曲线如图.
(Ⅰ)根据图象求b,k的值;
(Ⅱ)若市场需求量为Q(x)=2${\;}^{11-\frac{t}{2}}$,当p=Q时的市场价格称为市场平衡价格,当市场平衡价格保持在10元时,求税率t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知随机变量ξ的分布列为:
ξ-1012
Px$\frac{1}{3}$$\frac{1}{6}$y
若$E(ξ)=\frac{1}{3}$,则x+y=$\frac{1}{2}$,D(ξ)=$\frac{11}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足${a_1}=\frac{1}{3},{a_{n+1}}={a_n}+\frac{a_n^2}{n^2}(n∈{N^*})$.
(1)证明:${a_n}<{a_{n+1}}<1(n∈{N^*})$;
(2)证明:${a_n}≥\frac{n}{2n+1}(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ax3+3x2+2,若f'(-1)=-12,则a的值等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,输出的A值为(  )
A.7B.15C.31D.63

查看答案和解析>>

同步练习册答案