精英家教网 > 高中数学 > 题目详情

若对任意,()有唯一确定的与之对应,称为关于的二元函数. 现定义满足下列性质的二元函数为关于实数的广义“距离”:

(1)非负性:,当且仅当时取等号;

(2)对称性:

(3)三角形不等式:对任意的实数z均成立.

今给出个二元函数:①;②;③;④.则能够成为关于的的广义“距离”的函数的所有序号是           .

 

【答案】

(1)

【解析】

试题分析:对于①,f(x,y)=|x-y|≥0满足(1),f(x,y)=|x-y|=f(y,x)=|y-x|满足(2);

f(x,y)=|x-y|=|(x-z)+(z-y)|≤|x-z|+|z-y|=f(x,z)+f(z,y)满足(3)

故①能够成为关于的x、y的广义“距离”的函数;对于②不满足(3);对于③不满足(2);对于④不满足(1)(2),故答案为①

考点:1.函数的概念及其构成要素.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3-mx2+(m2-4)x,x∈R.
(1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)已知关于x的方程f(x)=0有三个互不相等的实根0,α,β(α<β),求实数m的取值范围;
(3)在(2)条件下,若对任意的x∈[α,β],都有f(x)≥-
16
3
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
13
x3-mx2+(m2-4)x,x∈R.已知函数f(x)有三个互不相同的零点0,α,β,且α<β.若对任意的x∈[α,β],都有f(x)≥f(1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)、g(x)的定义域分别为M,N,且M⊆N,若对任意的x∈M,都有g(x)=f(x),则称g(x)是f(x)的“拓展函数”.已知函数f(x)=
1
3
log2x
,若g(x)是f(x)的“拓展函数”,且g(x)是偶函数,则符合条件的一个g(x)的解析式是
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)对于具有相同定义域D的函数f(x)和g(x),若对任意的x∈D,都有|f(x)-g(x)|≤1,则称f(x)和g(x)在D上是“密切函数”.给出定义域均为D={x|0≤x≤4}的四组函数如下:
①f(x)=ln(x+1),g(x)=
2x
x+2
;   ②f(x)=x3,g(x)=3x-1;
③f(x)=ex-2x(其中e为自然对数的底数),g(x)=2-x;④f(x)=
2
3
x-
5
8
,g(x)=
x

其中,函数f(x)和g(x)在D上为“密切函数”的是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,(x>0,且x≠1)
(Ⅰ)求函数r(x)=
1f(x)
的单调区间;
(Ⅱ)若对任意的n∈N+,都有an>0,且a1+a2+…+a2013=2013e(e为自然对数的底),求f(a1)+f(a2)+…+f(a2013)的最小值.

查看答案和解析>>

同步练习册答案