精英家教网 > 高中数学 > 题目详情
10.已知$\overrightarrow{a}$=(-1,-3,2),$\overrightarrow{b}$=(1,2,0),若存在$\overrightarrow{c}$使$\overrightarrow{a}$∥$\overrightarrow{c}$且$\overrightarrow{b}$•$\overrightarrow{c}$=5,则$\overrightarrow{c}$=($\frac{5}{7}$,$\frac{15}{7}$,-$\frac{10}{7}$).

分析 设出向量$\overrightarrow{c}$的坐标,根据空间向量共线以及数量积的坐标表示,列出方程,求出向量$\overrightarrow{c}$.

解答 解:设$\overrightarrow{c}$=(x,y,z),
∵$\overrightarrow{a}$=(-1,-3,2),$\overrightarrow{b}$=(1,2,0),
且$\overrightarrow{a}$∥$\overrightarrow{c}$,
∴$\frac{x}{-1}$=$\frac{y}{-3}$=$\frac{z}{2}$,①
又$\overrightarrow{b}$•$\overrightarrow{c}$=5,∴x+2y=5,②
由①②解得x=$\frac{5}{7}$,y=$\frac{15}{7}$,z=-$\frac{10}{7}$;
∴$\overrightarrow{c}$=($\frac{5}{7}$,$\frac{15}{7}$,-$\frac{10}{7}$).
故答案为:($\frac{5}{7}$,$\frac{15}{7}$,-$\frac{10}{7}$).

点评 本题考查了空间向量共线以及数量积的坐标运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.f(x)图象如图,则f(x)=$\left\{\begin{array}{l}{x+1}&{-1≤x≤0}\\{-\frac{1}{2}x}&{0<x≤2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-$\overrightarrow{b}$|=$\sqrt{3}$,则|$\overrightarrow{c}$+2$\overrightarrow{a}$|的取值范围是(  )
A.[$\frac{3}{2}$,+∞)B.[$\sqrt{3}$,3]C.[$\sqrt{3}$,+∞)D.[$\frac{3}{2}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.判断并证明函数f(x)=-x2+2x在R上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆的参数方程$\left\{\begin{array}{l}{x=2cosθ+2}\\{y=2sinθ-1}\end{array}\right.$,则该圆的圆心为(  )
A.(-2,1)B.(2,-1)C.(2,1)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=3sinx+4cosx(0≤x≤$\frac{π}{2}$)的值域是[$\frac{5}{2}$,5],取最大值时tanx的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,|$\overrightarrow{AB}$|=1,|$\overrightarrow{BC}$|=2,$\overrightarrow{AD}$•$\overrightarrow{DC}$=0,则|$\overrightarrow{BD}$|的最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知△ABC三条边长分别为a=t2+3,b=-t2-2t+3,c=4t,t∈R,则△ABC的最大内角是角A;它的度数等于120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知x∈(0,$\frac{π}{2}$),求函数f(x)=3cosx+4$\sqrt{1+si{n}^{2}x}$的最大值,并说明等号成立的条件.

查看答案和解析>>

同步练习册答案