【题目】某轮船公司年初以200万元购进一艘轮船,以每年40万元的价格出租给海运公司.轮船公司负责轮船的维护,第一年维护费为4万元,随着轮船的使用与磨损,以后每年的维护费比上一年多2万元,同时该轮船第年末可以以万元的价格出售.
(1)写出轮船公司到第年末所得总利润万元关于的函数解析式,并求的最大值;
(2)为使轮船公司年平均利润最大,轮船公司应在第几年末出售轮船?
科目:高中数学 来源: 题型:
【题目】团体购买公园门票,票价如下表:
购票人数 | 1~50 | 51~100 | 100以上 |
门票价格 | 13元/人 | 11元/人 | 9元/人 |
现某单位要组织其市场部和生产部的员工游览该公园,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数之差为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间(分钟) | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数(人) | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求关于的线性回归方程;
(2)判断(1)中的方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为: ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年“十一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段: , , , , , ,后得到如图的频率分布直方图.
(1)求这40辆小型车辆车速的众数和中位数的估计值;
(2)若从车速在的车辆中任抽取2辆,求车速在的车辆恰有一辆的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,PA=1,点M是棱PC上的一点,且AM⊥PB.
(1)求三棱锥C﹣PBD的体积;
(2)证明:AM⊥平面PBD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com