精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在上的奇函数,且,若时,有成立.

(Ⅰ)判断上的单调性,并证明;

(Ⅱ)解不等式

(Ⅲ)若对所有的恒成立,求实数的取值范围.

【答案】(1)减函数(2)(3).

【解析】试题分析:

(Ⅰ)根据单调性定义,设,作差,由奇函数的定义化为,再利用已知条件得,从而得函数为减函数;

(Ⅱ)由减函数的定义得,但还要注意定义域,因此有

(Ⅲ)题设不等式恒成立,即恒成立,恒成立,作为的一次不等式,只要时不等式成立即可.

试题解析:

(Ⅰ)上是减函数,

任取,则

为奇函数,

由题知

,即

上单调递减.

(Ⅱ)上单调递减,

解得不等式的解集为.

(Ⅲ)上单调递减,

上,

问题转化为,即,对任意的恒成立,

,即,对任意恒成立,

则由题知,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四棱锥E﹣ABCD中,四边形ABCD为平行四边形,△BCE为等边三角形,△ABE是以∠A为直角的等腰直角三角形,且AC=BC.

(Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥 中,底面 为平行四边形,

(Ⅰ)证明:平面 平面
(Ⅱ)若二面角 ,求 与平面 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,f(x)的图象在y轴上的截距为2,其相邻两对称轴间的距离为1,则f(1)+f(2)+f(3)+…+f(100)=(  )
A.0
B.100
C.150
D.200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年初的时候,国家政府工作报告明确提出, 年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少, 月至月的用煤量如下表所示:

月份

用煤量(千吨)

(1)由于某些原因, 中一个数据丢失,但根据月份的数据得出样本平均值是,求出丢失的数据;

(2)请根据月份的数据,求出关于的线性回归方程

(3)现在用(2)中得到的线性回归方程中得到的估计数据与月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?

(参考公式:线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinx,若存在x1 , x2 , ,xm满足0≤x1<x2<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+|f(xn﹣1)﹣f(xn)|=12,(m≥2,m∈N*),则m的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆O:x2+y2=4与x轴的正半轴交于点A,以A为圆心的圆A:(x﹣2)2+y2=r2(r>0)与圆O交于B,C两点.

(1)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当线段DE长最小时,求直线l的方程;
(2)设P是圆O上异于B,C的任意一点,直线PB、PC分别与x轴交于点M和N,问OMON是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,有如下结论

①函数f(x)的值域是[-1,1];

②函数f(x)的减区间为[1,3];

③若存在实数x1x2x3x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则x1+x2<0;

④在③的条件下x3+x4=6;

⑤若方程f(x)=a有3个解,则<a≤1

其中正确的是

A. ①②③ B. ③④⑤ C. ②③⑤ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义“等和数列”:在一个数列中,如果每一个项与它的后一项的和都为同一个常数,那么这个数列就叫做“等和数列”,这个常数叫做公和.已知数列{an}是等和数列,且a1=2,公和为6,求这个数列的前n项的和S=

查看答案和解析>>

同步练习册答案