精英家教网 > 高中数学 > 题目详情
已知椭圆的右焦点为 为椭圆的上顶点,为坐标原点,且两焦点和短轴的两端构成边长为的正方形.
(1)求椭圆的标准方程;
(2)是否存在直线交与椭圆于,且使,使得的垂心,若存在,求出点的坐标,若不存在,请说明理由.
(1) ;(2).

试题分析:(1)利用正方形的性质,椭圆的性质;(2)由直线的方程于椭圆的方程组成方程组,消去,由综合求得.
试题解析:(1)由两焦点与短轴的两端点构成边长为的正方形,则
所以椭圆方程为.            (4分)
(2)假设存在直线交椭圆于两点,且使的垂心,设
,则,故直线的斜率,∴设直线的方程为
,由题意知,即,      (7分)
,由题意应有

,                    (9分)

解得,经检验,当时,不存在,故舍去
∴当时,所求直线方程为满足题意,
综上所述,存在直线,且直线的方程为,             (14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;
(3)过原点任意作两条互相垂直的直线与椭圆相交于四点,设原点到四边形的一边距离为,试求满足的条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的左、右焦点分别为,且椭圆过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为为椭圆的两个焦点,点在椭圆上,且的周长为
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆相交于两点,若为坐标原点),求证:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点
线段垂直平分线交于点,求点的轨迹的方程;
(Ⅲ)设轴交于点,不同的两点上,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定圆的圆心为,动圆过点,且和圆相切,动圆的圆心的轨迹记为
(Ⅰ)求曲线的方程;
(Ⅱ)若点为曲线上一点,试探究直线:与曲线是否存在交点? 若存在,求出交点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左、右焦点分别为F1、F2,P是椭圆上的一点,,且,垂足为,若四边形为平行四边形,则椭圆的离心率的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点在圆上,直线交椭圆于两点.
(1)求椭圆的方程;
(2)若(为坐标原点),求的值;
(3)设点关于轴的对称点为不重合),且直线轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=8,则点M的轨迹是( )
A.线段B.直线C.椭圆D.圆

查看答案和解析>>

同步练习册答案