精英家教网 > 高中数学 > 题目详情
20.实数x、y满足$\left\{\begin{array}{l}{y≤x+1}\\{y≥-x+1}\\{x≤3}\end{array}\right.$,这Z=3x+4y,则Z的取值范围是(  )
A.[1,25]B.[4,25]C.[1,4]D.[5,24]

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{y≤x+1}\\{y≥-x+1}\\{x≤3}\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{x=3}\\{y=-x+1}\end{array}\right.$,解得A(3,-2),
联立$\left\{\begin{array}{l}{x=3}\\{y=x+1}\end{array}\right.$,解得B(3,4),
化目标函数Z=3x+4y为y=$-\frac{3}{4}x+\frac{Z}{4}$.
由图可知,当直线y=$-\frac{3}{4}x+\frac{Z}{4}$过A时,直线在y轴上的截距最小,Z有最小值为1;
当直线y=$-\frac{3}{4}x+\frac{Z}{4}$过B时,直线在y轴上的截距最大,Z有最小值为25.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.有下列五个命题:
①在平面内,F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是椭圆;
②“在△ABC中,∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件;
③“x=0”是“x≥0”的充分不必要条件;
④已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$是空间的一个基底,则向量$\overrightarrow a+\overrightarrow b,\overrightarrow a-\overrightarrow b,\overrightarrow c$也是空间的一个基底;
⑤直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}=-3$.
其中真命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司欲制作容积为16米3,高为1米的无盖长方体容器,已知该容器的底面造价是每平方米1000元,侧面造价是每平方米500元,记该容器底面一边的长为x米,容器的总造价为y元.
(1)试用x表示y;
(2)求y的最小值及此时该容器的底面边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.
(Ⅰ)求这40件样本该项质量指标的平均数$\overline{x}$;
(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x|x2-x≤0},B={0,1,2},则A∩B=(  )
A.B.{0}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.信息时代,学生广泛使用手机,从某校学生中随机抽取200名,这200名学生中上课时间和不上时间都不使用手机的共有37人,这200名学生每天在校使用手机情况如下表:
分类
人数(人)
时间
一小时以上一小时以内不使用合计
上课时间2355m98
不上课时间176817102
合计40123n200
利用以上数据,将统计的频率视为概率.
(1)求上表中m、n的值;
(2)求该校学生上课时间使用手机的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,a2=0,a4=4,则{an}的前5项和S5=(  )
A.20B.14C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)某校夏令营有2名男同学和2名女同学,现从这4名同学中随机选出2人参加知识竞赛(每人被选中的可能性相同).设M为事件“选出的2人中有1名男同学和1名女同学”,求事件M发表的概率.
(2)已知函数f(x)=ax+$\frac{4}{x}$,从区间(-2,2)内任取一个实数a,设事件A={函数y=f(x)-2在区间(0,+∞)上有两个不同的零点},求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知幂函数y=f(x)的图象过点$(3,\sqrt{3})$,则f(8)=$2\sqrt{2}$.

查看答案和解析>>

同步练习册答案