精英家教网 > 高中数学 > 题目详情
下列说法中正确的是(  )
A、“a=1”是直线“l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的充要条件
B、命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x>0”
C、命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0”
D、若p∧q为假命题,则p,q均为假命题
考点:命题的真假判断与应用
专题:简易逻辑
分析:A选项由直线平行的条件可得出命题的正误;
B选项根据特称命题的否定规则可判断出命题的正误;
C选项由逆否命题的规则即可判断命题的正误;
D选项由且命题的逻辑规则判断可得出命题的正误.
解答: 解:对于A,当a=1时,两直线分别为l1:x+2y-1=0与直线l2:x+2y+4=0,两直线平行,故充分性成立,当两直线平行时,令a(a+1)-2=0,解得a=-2,或a=1,验证知,a=-2可保证两直线平行,故必要性不成立,所以A错误
对于B,特称命题的否定是全称命题,故命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,B选项错误;
对于C命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0”,C选项正确;
对于D,且命题有假则假,故“若p∧q为假命题,则p,q均为假命题”的结论是错误的,D选项错误
故选:C.
点评:本题考查命题真假的判断,涉及到了充要条件,命题的否定,复合命题真假的判断,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,M为不等式组
2x-y-2≥0
x+2y-1≥0
3x+y-8≤0
所表示的区域上一动点,则直线OM斜率的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=Asin(ωx+φ) (ω>0,φ∈(-
π
2
π
2
))
的最小正周期为π,且其图象关于直线x=
π
12
对称,则下面四个结论:
①图象关于点(
π
4
,0)
对称;     
②图象关于点(
π
3
,0)
对称;
③在[0,
π
12
]
上是增函数;        
④在[-
π
12
,0]
上是减函数;
正确结论的编号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,过椭圆
x=2cosθ
y=
3
sinθ
(θ为参数)的右焦点,且于直线
x=4-2t
y=3-t
(t为参数)平行的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把复数z的共轭复数记为
.
z
,已知(1+2i)
.
z
=4+3i,则复数z=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的个数为(  )
①已知-1≤x+y≤1,1≤x-y≤3,则3x-y的范围是[1,7];
②若不等式2x-1>m(x2-1)对满足|m|≤2的所有m都成立,则x的范围是(
7
-1
2
3
+1
2
);
③如果正数a,b满足ab=a+b+3,则ab的取值范围是[8,+∞);
a=log
1
3
2,b=log
1
2
3,c=(
1
3
)0.5
大小关系是a>b>c.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线C:2x2-y2=m(m>0)与抛物线y2=8x的准线交于A,B两点,且|AB|=2
3
,则实数m的值为(  )
A、29B、20C、12D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、梯形可以确定一个平面
B、圆心和圆上两点可以确定一个平面
C、两条直线a,b没有公共点,那么a与b是异面直线
D、若a,b是两条直线,α,β是两个平面,且a?α,b?β,则a,b是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1﹙a>0,b>0﹚,F1,F2是其左右焦点,若椭圆的离心率为
1
2
,椭圆的焦点到相应准线的距离为3,
(1)求椭圆的标准方程;
(2)椭圆上是否存在一点M,使点M到其左准线的距离MN是MF1,MF2的等比中项?若存在,求出该点的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案