精英家教网 > 高中数学 > 题目详情
14.化简$\sqrt{2+cos2-si{n^2}1}$的结果是(  )
A.-cos1B.cos 1C.$\sqrt{3}$cos 1D.$-\sqrt{3}cos1$

分析 利用二倍角公式,同角三角函数关系式即可化简求值.

解答 解:$\sqrt{2+cos2-si{n^2}1}=\sqrt{1+cos2+1-{{sin}^2}1}=\sqrt{2{{cos}^2}1+{{cos}^2}1}=\sqrt{3}cos1$.
故选:C.

点评 本题主要考查了二倍角公式,同角间三角公式的综合应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设p:ω=1,q:f(x)=sin($ωx+\frac{π}{3}$)(ω>0)的图象关于点(-$\frac{π}{3}$,0)对称,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果当x≥1时,不等式f(x)≥$\frac{k}{x+1}$恒成立,求实数k的取值范围;
(Ⅲ)求证:$\sum_{k=1}^n{[lnk+ln(k+1)]}>\frac{{{n^2}-n-1}}{n+1}(n∈{N^*})$.(说明:$\sum_{i=1}^n{x_i}$=x1+x2+…+xn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin2($\frac{π}{2}$-x)+2$\sqrt{3}$sin(π-x)cosx
(1)求函数f(x)在[-π,π]上的单调递减区间.
(2)在△ABC中,C>$\frac{π}{6}$,若f(c)=1+$\sqrt{3}$,2sinB=cos(A-C)-cos(A+C),求A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC中,角A,B,C所对的边长分别为a,b,c,且满足csinA=$\sqrt{3}$acosC,则sinA+sinB的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,$\overrightarrow{AB}=(2\;,\;\;-1)$,$\overrightarrow{AC}=(x\;,\;\;3)$,其中x为实数.若△ABC为直角三角形,则x=$\frac{3}{2}$或4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a∈R,若关于x的方程x2+x-|a+$\frac{1}{4}$|+a2=0没有实根,则a的取值范围是(  )
A.(-∞,-1)∪($\frac{1+\sqrt{3}}{2}$,+∞)B.(-∞,$\frac{-1+\sqrt{3}}{2}$)∪(1,+∞)
C.(-∞,-1)∪(1,+∞)D.(-∞,$\frac{-1-\sqrt{3}}{2}$)∪($\frac{1+\sqrt{3}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线x+2y-5=0关于直线x=3对称的直线方程是x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,an=2(n-2)×3n-1,则数列{an}的前n项和Tn等于(  )
A.$\frac{(2n-1){3}^{n}+5}{2}$B.$\frac{(2n-3){3}^{n}+5}{2}$C.$\frac{(2n-5){3}^{n}+5}{2}$D.$\frac{(2n+5){3}^{n}+5}{2}$

查看答案和解析>>

同步练习册答案