精英家教网 > 高中数学 > 题目详情
4.已知直线经过点P(1,2),且与直线y=2x+3平行,则该直线方程为y=2x.

分析 设所求直线的方程为y=2x+b,将P点代入求出b值,可得答案.

解答 解:∵所求直线与直线y=2x+3平行,
∴设所求直线的方程为y=2x+b,
∵直线经过点P(1,2),
∴2=2+b,解得:b=0,
故所求直线的方程为:y=2x;
故答案为:y=2x

点评 本题考查的知识点是待定系数法求直线方程,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3).
(1)若M为圆C上任一点,求|MQ|的最大值和最小值;
(2)若实数m,n满足m2+n2-4m-14n+45=0,求k=$\frac{n-3}{m+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{OP}=(-8m,-6cos\frac{π}{3})$与单位向量(1,0)所成的角为θ,且$cosθ=-\frac{4}{5}$,则m的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的偶函数f(x)满足:对于任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有(  )
A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A(x,-2),B(3,0),若直线AB的斜率为2,则x的值为(  )
A.-1B.2C.-1或2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=90°,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则$\frac{{|{\overrightarrow{MN}}|}}{{|{\overrightarrow{AB}}|}}$的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-2|+|x+a|.
(1)若a=1,解不等式 f(x)≤2|x-2|;
(2)若f(x)≥2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x∈N*|-2<x≤2},B={y|y=2x,x∈A}|,C={z|z=1+log2y,y∈B},则A∩C=(  )
A.{1,2}B.{2}C.{2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex(ax2+bx+c)的导函数y=f′(x)的两个零点为-3和0.(其中e=2.71828…)
(Ⅰ)当a>0时,求f(x)的单调区间;
(Ⅱ)若f(x)的极小值为-e3,求f(x)在区间[-5,1]上的最大值.

查看答案和解析>>

同步练习册答案