分析 (1)将P的坐标代入f(x)的解析式,得到关于a,b的一个等式;求出导函数,求出f′(1)即切线的斜率,利用垂直的两直线的斜率之积为-1,列出关于a,b的另一个等式,解方程组,求出a,b的值,即可求函数f(x)的解析式;
(2)求出 f′(x),令f′(x)>0,求出函数的单调递增区间,据题意知[m,m+1]⊆(-∞,-2]∪[0,+∞),列出端点的大小,求出m的范围.
解答 解:(1)∵y=f(x)过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直,
∴$\left\{\begin{array}{l}{-a+b=2}\\{3a-2b=-3}\end{array}\right.$,
∴a=1,b=3,
∴f(x)=x3+3x2.
(2)由题意得:f′(x)=3x2+6x=3x(x+2)>0,
解得x>0或x<-2.
故f(x)的单调递增为(-∞,-2]和[0,+∞).
即m+1≤-2或m≥0,
故m≤-3或m≥0.
点评 注意函数在切点处的导数值是曲线的切线斜率;直线垂直的充要条件是斜率之积为-1.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com