分析 (1)由AD⊥平面ABE,AD∥BC,可得BC⊥平面ABE,得到AE⊥BC.再由BF⊥平面ACE,可得BF⊥AE,结合线面垂直的判定可得AE⊥平面BCE;
(2)取AB中点O,连结OE,由AE=EB,得OE⊥AB,再由AD⊥平面ABE,得OE⊥AD,进一步得到OE⊥平面ADC,然后求解直角三角形求得AB、OE的长度,代入棱锥体积公式得答案.
解答 (1)证明:∵AD⊥平面ABE,AD∥BC,
∴BC⊥平面ABE,
∵AE?平面ABE,
∴AE⊥BC.
又∵BF⊥平面ACE,
且AE?平面ACE,
∴BF⊥AE,
∵BC∩BF=B,
∴AE⊥平面BCE;
(2)解:取AB中点O,连结OE,∵AE=EB,∴OE⊥AB,
∵AD⊥平面ABE,∴OE⊥AD,得OE⊥平面ADC,
∵AE⊥平面BCE,∴AE⊥EB,可得$AB=\sqrt{A{E^2}+B{E^2}}=2\sqrt{2}$,
∴$OE=\frac{1}{2}AB=\sqrt{2}$.
故三棱锥E-ADC的体积为:${V_{E-ADC}}=\frac{1}{3}{S_{△ADC}}•OE=\frac{1}{3}×\frac{1}{2}×2×2\sqrt{2}×\sqrt{2}=\frac{4}{3}$.
点评 本题考查直线与平面垂直的判定,考查空间想象能力和思维能力,训练了柱、锥、台体体积的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,1,-5) | B. | (-2,-1,-5) | C. | (2,-1,5) | D. | (2,1,-5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{9}{25}$ | B. | $\frac{4}{5}$ | C. | $\frac{9}{16}$ | D. | $\frac{9}{20}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $f(x)=sin(x+\frac{π}{2})$ | B. | $f(x)=sin(x-\frac{π}{2})$ | C. | $f(x)=sin(2x+\frac{π}{2})$ | D. | $f(x)=sin(2x-\frac{π}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com