精英家教网 > 高中数学 > 题目详情

已知函数)的图象在处的切线与轴平行.
(1)确定实数的正、负号;
(2)若函数在区间上有最大值为,求的值.

(1);(2).

解析试题分析:(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.
试题解析:(1)                1分
由图象在处的切线与轴平行,
,∴.                2分
,故.                                      3分
(2) 令,
.                                        4分
,令,得
,得.
于是在区间内为增函数,在内为减函数,在内为增函数.
的极大值点,是极小值点.                    5分
,得.                      6分
分类:① 当时,,∴ .    
解得,                                      8分
② 当时,,                    9分
.     
得  .             10分
,
,                11分
上是增函数,又,∴,       12分
上无实数根.                            13分
综上,的值为.                 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处的切线方程;
(2)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将接通.已知,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设所成的小于的角为

(Ⅰ)求矩形区域内的排管费用关于的函数关系式;
(Ⅱ)求排管的最小费用及相应的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数,分别是的导函数,若在区间上恒成立,则称在区间上单调性一致.
(Ⅰ)设,若函数在区间上单调性一致,求实数的取值范围;
(Ⅱ)设,若函数在以为端点的开区间上单调性一致,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知常数都是实数,函数的导函数为的解集为
(Ⅰ)若的极大值等于,求的极小值;
(Ⅱ)设不等式的解集为集合,当时,函数只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)若函数上是减函数,求实数的最小值;
(2)若,使)成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(Ⅰ)当时,求的单调区间;
(Ⅱ)若函数上无零点,求最小值;
(Ⅲ)若对任意给定的,在上总存在两个不同的),使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,判断函数是否有极值;
(Ⅱ)若时,总是区间上的增函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案