精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x3-
1
2
x2+m(m为常数)的图象上A点处的切线与直线x+y+3=0垂直,则点A的横坐标为(  )
A、
1
2
B、-
1
3
C、
1
2
-
1
3
D、1或
1
6
分析:先根据切线与已知直线垂直,求出该切线的斜率为1,再利用导数的几何意义解方程f′(x)=0,求解出x的值,即为所求的点A的横坐标.
解答:解:设点A(x0,y0
∵直线x+y+3=0斜率是-1,并且切线与直线x+y+3=0垂直
∴函数f(x)过点A处的切线的斜率是1.
根据导数的几何意义得知,f′(x0)=6x02-x0=1,
解方程,得x0=
1
2
或x0=-
1
3

故选C.
点评:本题是考查两个常见考点:①互相垂直的两个直线的斜率之积为-1;②切线的斜率等于导数在切点处的函数值.该题将两个知识点完美结合,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案