分析 根据向量加法的平行四边法则,$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OE}$,而$\overrightarrow{OE}$=2$\overrightarrow{OF}$,可以推出$\overrightarrow{OF}$=$\frac{1}{2}$$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$).
解答 证明:如右图,O为任意一点,F为AB的中点,
以OA,OB为邻边构造平行四边形OAEB,
其对角线AB,OE互相平分,
即F为AB的中点,也是OE的中点,
根据向量加法的平行四边法则,
$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OE}$,
而$\overrightarrow{OE}$=2$\overrightarrow{OF}$,
所以,$\overrightarrow{OF}$=$\frac{1}{2}$$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),即证.
点评 本题主要考查了向量加法的几何意义,涉及平行四边形法则和平行四边形的性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
大笔记本 | 小笔记本 | |
价格(元/本) | 6 | 5 |
页数(页/本) | 100 | 60 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{abc}{6s}$ | B. | $\frac{abc}{3s}$ | C. | $\frac{abc}{2s}$ | D. | $\frac{abc}{s}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com