精英家教网 > 高中数学 > 题目详情
过点A(2,1)与直线l:x-y+1=0的夹角为45°的直线方程为
x=2或y=1
x=2或y=1
分析:通过已知条件判断出所求直线的斜率为k,结合直线经过的点,即可得到满足条件的直线方程.
解答:解:直线l:x-y+1=0的斜率为1,即倾斜角为45°,过点A(2,1)与直线l:x-y+1=0的夹角为45°的直线l1的斜率为:0或不存在,
∴所求直线的方程为y=1或x=2.
故答案为:x=2或y=1.
点评:本题求经过定点且与已知直线夹角为定值的直线方程.着重考查了直线的方程与直线的位置关系等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P与直x=4的距离等于它到定点F(1,0)的距离的2倍,
(1)求动点P的轨迹C的方程;
(2)点M(1,1)在所求轨迹内,且过点M的直线与曲线C交于A、B,当M是线段AB中点时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图梯形ABCD,AD∥BC,∠A=90°,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为P,在直线DE上是否存在一点M,使得PM∥面BCD?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省皖南八校高三第一次联考理科数学试卷 题型:解答题

(本小题满分12分)已知椭圆过点A(a,0),B(0,b)的直

 

线倾斜角为,原点到该直线的距离为.

 

(1)求椭圆的方程;

(2)斜率小于零的直线过点D(1,0)与椭圆交于M,N两点,若求直线MN的方程;

(3)是否存在实数k,使直线交椭圆于P、Q两点,以PQ为直径的圆过点D(1,0)?若存在,求出k的值;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案