精英家教网 > 高中数学 > 题目详情
已知椭圆方程为x2+
y2
8
=1,射线y=2
2
x(x≥0)与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).
(1)求证直线AB的斜率为定值;
(2)求△AMB面积的最大值.
分析:(1)设k>0,求得M的坐标,则可表示出AM的直线方程和BM的直线方程,分别与椭圆的方程联立求得xA和xB,进而求得AB的斜率.
(2)设出直线AB的方程与椭圆方程联立消去y,利用判别式大于0求得m的范围,进而表示出三角形AMB的面积,利用m的范围确定面积的最大值.
解答:解:(1)∵斜率k存在,不妨设k>0,求出M(
2
2
,2),
直线MA方程为y-2=k(x-
2
2
),直线MB方程为y-2=-k(x-
2
2
).
分别与椭圆方程联立,可解出xA=
2
k2-4k
k2+8
-
2
2
,xB=
2
k2+4k
k2+8
-
2
2

则yA=2-k(x-
2
2
),yB=2+k(x-
2
2
),
kAB=
yA-yB
xA-xB
=2
2

∴kAB=2
2
(定值).
(2)设直线AB方程为y=2
2
x+m,与x2+
y2
8
=1联立,消去y得16x2+4
2
mx+(m2-8)=0
由△>0得-4<m<4,且m≠0,点M到AB的距离d=
|m|
3

设△AMB的面积为S.∴S2=
1
4
|AB|2d2=
1
32
m2(16-m2)≤
1
32
(
16
2
)
2
=2.
当m=±2
2
时,得Smax=
2
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆方程为
x
2
 
4
+
y
2
 
3
=1
,双曲线
x
2
 
a
2
 
-
y
2
 
b
2
 
=1(a>0,b>0)
的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为x2+2y2=1,则该椭圆的长轴长为
2
2

查看答案和解析>>

科目:高中数学 来源:2010年北京大学附中高三数学提高练习试卷(3)(解析版) 题型:解答题

已知椭圆方程为x2+=1,射线y=2x(x≥0)与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).
(1)求证直线AB的斜率为定值;
(2)求△AMB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2010年新教材高考数学模拟题详解精编试卷(5)(解析版) 题型:解答题

已知椭圆方程为x2+=1,射线y=2x(x≥0)与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).
(1)求证直线AB的斜率为定值;
(2)求△AMB面积的最大值.

查看答案和解析>>

同步练习册答案