精英家教网 > 高中数学 > 题目详情

【题目】某大学棋艺协会定期举办以棋会友的竞赛活动,分别包括中国象棋围棋五子棋国际象棋四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选中国象棋,不选国际象棋,乙同学从四种比赛中任选两种参与.

1)求甲参加围棋比赛的概率;

2)求甲、乙两人参与的两种比赛都不同的概率.

【答案】1 2.

【解析】

1)根据题意得到甲同学的选择的情况,从而得到概率;

2)记中国象棋围棋五子棋国际象棋分别为1,2,3,4,列出所有的情况,在得到符合要求的情况,由古典概型的公式,得到答案.

1)依题意,甲同学必选中国象棋,不选国际象棋

所以甲同学选择的情况有中国象棋围棋,或中国象棋五子棋

故甲参加围棋比赛的概率为

2)记中国象棋围棋五子棋国际象棋分别为1,2,3,4

则所有的可能为

其中满足条件的有两种,

故所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组,第二组第八组,如图是按上述分组方法得到的频率分布直方图的一部分.

(1)求第七组的频率,并完成频率分布直方图;

(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);

(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设交于两点,中点为的垂直平分线交.为坐标原点,极轴为轴的正半轴建立直角坐标系.

1)求的直角坐标方程与点的直角坐标;

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

1)讨论的单调性;

2)证明:当时,.

3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设经过点的直线与抛物线相交于两点,经过点的直线与抛物线相切于点.

1)当时,求的取值范围;

2)问是否存在直线使得成立,若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间和的极值;

(2)对于任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,已知,顶点P在平面ABC上的射影为的外接圆圆心.

1)证明:平面平面ABC

2)若点M在棱PA上,,且二面角P-BC-M的余弦值为,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某印刷厂为了研究单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

印刷册数(千册)

单册成本(元)

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.

(1)为了评价两种模型的拟合效果,完成以下任务.

①完成下表(计算结果精确到);

印刷册数(千册)

单册成本(元)

模型甲

估计值

残差

模型乙

估计值

残差

②分别计算模型甲与模型乙的残差平方和,并通过比较,判断哪个模型拟合效果更好.

(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为千册,若印刷厂以每册元的价格将书籍出售给订货商,求印刷厂二次印刷千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.向这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是(

A.48枚,乙48B.64枚,乙32

C.72枚,乙24D.80枚,乙16

查看答案和解析>>

同步练习册答案