精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的前n项和为Sn , S4=﹣24,a1+a5=﹣10. (Ⅰ)求{an}的通项公式;
(Ⅱ)设集合A={n∈N*|Sn≤﹣24},求集合A中的所有元素.

【答案】解:(Ⅰ)设等差数列{an}的公差为d,

∵a1+a5=﹣10,S4=﹣24,

解得a1=﹣9,d=2,

∴an=﹣9+2(n﹣1)=2n﹣11;

(Ⅱ) =n2﹣10n,

由n2﹣10n≤﹣24,整理得n2﹣10n+24≤0,解得4≤n≤6.

∴集合A={n∈N*|Sn≤﹣24}中的所有元素为4,5,6


【解析】(Ⅰ)由已知条件利用等差数列通项公式和前n项和公式列方程组,求出首项和公差,由此能求出{an}的通项公式;(Ⅱ)把a1=﹣9,d=2代入等差数列的前n项和公式化简整理,然后解一元二次不等式即可求出答案.
【考点精析】通过灵活运用等差数列的通项公式(及其变式),掌握通项公式:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点求证:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界,已知函数

Ⅰ)若是奇函数,求的值.

Ⅱ)当时,求函数上的值域,判断函数上是否为有界函数,并说明理由.

Ⅲ)若函数上是以为上界的函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, .

(1)当时,求函数f(x)的值域;

(2)若恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量毫克与时间小时成正比;药物释放完毕后,的函数关系式为为常数,如图所示.据图中提供的信息,回答下列问题:

1写出从药物释放开始,每立方米空气中的含药量毫克与时间小时之间的函数关系式;

2据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex﹣kx2+2,k∈R. (Ⅰ) 当k=0时,求f(x)的极值;
(Ⅱ) 若对于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.

组号

年龄

访谈人数

愿意使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?

年龄不低于48岁的人数

年龄低于48岁的人数

合计

愿意使用的人数

不愿意使用的人数

合计

参考公式: ,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, 的中点,将沿折起,使间的距离为则点到平面的距离为(

A. B. C. 1 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题正确的个数是( )

若方程有一个正实根,一个负实根,则;

函数是偶函数,但不是奇函数;

设函数的定义域为,则函数与函数图像关于轴对称;

一条曲线和直线的公共点个数是,则的值不可能是1。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案